OpenCV基于距离变换和分水岭实现图像分割

目录
  • 一.图像分割
  • 二.基于距离变换和分水岭的图像分割
    • 代码实现
    • 图像处理效果

一.图像分割

图像分割是根据灰度、颜色、纹理和形状等特征,把图像分成若干个特定的、具有独特性质的区域,这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性,并提出感兴趣目标的技术和过程。 它是由图像处理到图像分析的关键步骤。从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程。图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号。

其目的是将图像中像素根据一定的规则分为若干(N)个聚(cluster)集合,每个集合包含一类像素。将对象在背景提取出来。

二.基于距离变换和分水岭的图像分割

分水岭法(Meyer)是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭。该算法的实现可以模拟成洪水淹没的过程,图像的最低点首先被淹没,然后水逐渐淹没整个山谷。当水位到达一定高度的时候将会溢出,这时在水溢出的地方修建堤坝,重复这个过程直到整个图像上的点全部被淹没,这时所建立的一系列堤坝就成为分开各个盆地的分水岭。分水岭算法对微弱的边缘有着良好的响应,但图像中的噪声会使分水岭算法产生过分割的现象。

距离变换API函数接口

距离变换用于计算图像中每一个非零点像素与其周围最近的零点像素之间的距离,返回的值保存了每一个非零点与最近零点的距离信息;在图像上的体现为图像上越亮的点,代表了离零点的距离越远。

void distanceTransform(
InputArray src,
OutputArray dst,
OutputArray labels,
int distanceType,
int maskSize,
int labelType=DIST_LABEL_CCOMP
);

参数说明

(1)src是单通道的8bit的二值图像(只有0或1)

(2)dst表示的是计算距离的输出图像,可以使单通道32bit浮点数据

(3)distanceType表示的是选取距离的类型,可以设置为CV_DIST_L1,CV_DIST_L2,CV_DIST_C等,具体如下:

DIST_USER User defined distance
DIST_L1=1 distance = |x1-x2| + |y1-y2
DIST_L2 the simple euclidean distance
DIST_C distance = max(|x1-x2|,|y1-y2|)
DIST_L12 L1-L2 metric: distance =2(sqrt(1+x*x/2) - 1))
DIST_FAIR distance = c^2(|x|/c-log(1+|x|/c)),c = 1.3998
DIST_WELSCH distance = c2/2(1-exp(-(x/c)2)), c= 2.9846
DIST_HUBER distance = |x|<c ? x^2/2 :c(|x|-c/2), c=1.345

(4)maskSize表示的是距离变换的掩膜模板,可以设置为3,5或CV_DIST_MASK_PRECISE,对 CV_DIST_L1 或CV_DIST_C 的情况,参数值被强制设定为 3, 因为3×3 mask 给出5×5 mask 一样的结果,而且速度还更快。

DIST_MASK_3 mask=3
DIST_MASK_5 mask=5
DIST_MASK-PRECISE  

(5)labels表示可选输出2维数组;

(6)labelType表示的是输出二维数组的类型,8位或者32位浮点数,图像是单一通道,并且大小与输入图像一致

watershed 分水岭函数API接口

void watershed( InputArray image, InputOutputArray markers );

参数说明

(1)参数 image,必须是一个8bit3通道彩色图像矩阵序列。

(2) 输入或输出32位单通道的标记,和图像一样大小。(输入高峰轮廓标记);在执行分水岭函数watershed之前,必须对第二个参数markers进行处理,它应该包含不同区域的轮廓,每个轮廓有一个自己唯一的编号,轮廓的定位可以通过Opencv中findContours方法实现,这个是执行分水岭之前的要求。

算法会根据markers传入的轮廓作为种子(也就是所谓的注水点),对图像上其他的像素点根据分水岭算法规则进行判断,并对每个像素点的区域归属进行划定,直到处理完图像上所有像素点。而区域与区域之间的分界处的值被置为“-1”,以做区分。

代码实现

1、将白色背景改为黑色,为后面的变换做准备;

2、使用filter2D与Laplace算子实现图像对比度的提高;sharpen锐化

3、通过threshold()转换为二值图像;

4、距离变换;

5、对距离变换的结果归一化到0-1之间;

6、使用阈值,再次二值化,得到标记;

7、腐蚀(erode)得到每个Peak;(peak : 山峰,山顶 )

8、发现轮廓findContours;

9、绘制轮廓;

10、分水岭变换;

11、对每个分割区域着色输出结果;

#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>

using namespace std;
using namespace cv;

int main(int argc, char** argv) {
	char input_win[] = "input image";
	char watershed_win[] = "watershed segmentation demo";
	Mat src = imread("D:/vcprojects/images/cards.png");
	// Mat src = imread("D:/kuaidi.jpg");
	if (src.empty()) {
		printf("could not load image...\n");
		return -1;
	}
	namedWindow(input_win, CV_WINDOW_AUTOSIZE);
	imshow(input_win, src);
	// 1. change background
	for (int row = 0; row < src.rows; row++) {
		for (int col = 0; col < src.cols; col++) {
			if (src.at<Vec3b>(row, col) == Vec3b(255, 255, 255)) {
				src.at<Vec3b>(row, col)[0] = 0;
				src.at<Vec3b>(row, col)[1] = 0;
				src.at<Vec3b>(row, col)[2] = 0;
			}
		}
	}
	namedWindow("black background", CV_WINDOW_AUTOSIZE);
	imshow("black background", src);

	// sharpen
	Mat kernel = (Mat_<float>(3, 3) << 1, 1, 1, 1, -8, 1, 1, 1, 1);
	Mat imgLaplance;
	Mat sharpenImg = src;
	filter2D(src, imgLaplance, CV_32F, kernel, Point(-1, -1), 0, BORDER_DEFAULT);
	src.convertTo(sharpenImg, CV_32F);
	Mat resultImg = sharpenImg - imgLaplance;

	resultImg.convertTo(resultImg, CV_8UC3);
	imgLaplance.convertTo(imgLaplance, CV_8UC3);
	imshow("sharpen image", resultImg);
	// src = resultImg; // copy back

	// convert to binary
	Mat binaryImg;
	cvtColor(src, resultImg, CV_BGR2GRAY);
	threshold(resultImg, binaryImg, 40, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary image", binaryImg);

	Mat distImg;
	distanceTransform(binaryImg, distImg, DIST_L1, 3, 5);
	normalize(distImg, distImg, 0, 1, NORM_MINMAX);
	imshow("distance result", distImg);

	// binary again
	threshold(distImg, distImg, .4, 1, THRESH_BINARY);
	Mat k1 = Mat::ones(13, 13, CV_8UC1);
	erode(distImg, distImg, k1, Point(-1, -1));
	imshow("distance binary image", distImg);

	// markers
	Mat dist_8u;
	distImg.convertTo(dist_8u, CV_8U);
	vector<vector<Point>> contours;
	findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE, Point(0, 0));

	// create makers
	Mat markers = Mat::zeros(src.size(), CV_32SC1);
	for (size_t i = 0; i < contours.size(); i++) {
		drawContours(markers, contours, static_cast<int>(i), Scalar::all(static_cast<int>(i) + 1), -1);
	}
	circle(markers, Point(5, 5), 3, Scalar(255, 255, 255), -1);
	imshow("my markers", markers*1000);

	// perform watershed
	watershed(src, markers);
	Mat mark = Mat::zeros(markers.size(), CV_8UC1);
	markers.convertTo(mark, CV_8UC1);
	bitwise_not(mark, mark, Mat());
	imshow("watershed image", mark);

	// generate random color
	vector<Vec3b> colors;
	for (size_t i = 0; i < contours.size(); i++) {
		int r = theRNG().uniform(0, 255);
		int g = theRNG().uniform(0, 255);
		int b = theRNG().uniform(0, 255);
		colors.push_back(Vec3b((uchar)b, (uchar)g, (uchar)r));
	}

	// fill with color and display final result
	Mat dst = Mat::zeros(markers.size(), CV_8UC3);
	for (int row = 0; row < markers.rows; row++) {
		for (int col = 0; col < markers.cols; col++) {
			int index = markers.at<int>(row, col);
			if (index > 0 && index <= static_cast<int>(contours.size())) {
				dst.at<Vec3b>(row, col) = colors[index - 1];
			}
			else {
				dst.at<Vec3b>(row, col) = Vec3b(0, 0, 0);
			}
		}
	}
	imshow("Final Result", dst);

	waitKey(0);
	return 0;
}

图像处理效果

输入原图像和锐化图像

原图和黑背景图(背景应为黑色)

threshold转化的二值化图片和距离变换结果图

距离变换结果图和二值化图像

到此这篇关于OpenCV基于距离变换和分水岭实现图像分割的文章就介绍到这了,更多相关OpenCV图像分割内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++中实现OpenCV图像分割与分水岭算法

    分水岭算法是一种图像区域分割法,在分割的过程中,它会把跟临近像素间的相似性作为重要的参考依据,从而将在空间位置上相近并且灰度值相近的像素点互相连接起来构成一个封闭的轮廓,封闭性是分水岭算法的一个重要特征. API介绍 void watershed( InputArray image, InputOutputArray markers ); 参数说明: image: 必须是一个8bit 3通道彩色图像矩阵序列 markers: 在执行分水岭函数watershed之前,必须对第二个参数markers

  • Opencv实现用于图像分割分水岭算法

    目标 • 使用分水岭算法基于掩模的图像分割 • 学习函数: cv2.watershed() 原理   任何一幅灰度图像都可以被看成拓扑平面,灰度值高的区域可以被看成是山峰,灰度值低的区域可以被看成是山谷.我们向每一个山谷中灌不同颜色的水,随着水的位的升高,不同山谷的水就会相遇汇合,为了防止不同山谷的水汇合,我们需要在水汇合的地方构建起堤坝.不停的灌水,不停的构建堤坝直到所有的山峰都被水淹没.我们构建好的堤坝就是对图像的分割.这就是分水岭算法的背后哲理.   但是这种方法通常都会得到过度分割的结果

  • OpenCV图像分割之分水岭算法与图像金字塔算法详解

    目录 前言 一.使用分水岭算法分割图像 1.cv2.distanceTransform()函数 2.cv2.connectedComponents()函数 3.cv2.watershed()函数 二.图像金字塔 1.高斯金字塔向下采样 2.高斯金字塔向上采样 3.拉普拉斯金字塔 4.应用图像金字塔实现图像的分割和融合 前言 主要介绍OpenCV中的分水岭算法.图像金字塔对图像进行分割的方法. 一.使用分水岭算法分割图像 分水岭算法的基本原理为:将任意的灰度图像视为地形图表面,其中灰度值高的部分表

  • OpenCV图像分割中的分水岭算法原理与应用详解

    图像分割是按照一定的原则,将一幅图像分为若干个互不相交的小局域的过程,它是图像处理中最为基础的研究领域之一.目前有很多图像分割方法,其中分水岭算法是一种基于区域的图像分割算法,分水岭算法因实现方便,已经在医疗图像,模式识别等领域得到了广泛的应用. 1.传统分水岭算法基本原理 分水岭比较经典的计算方法是L.Vincent于1991年在PAMI上提出的[1].传统的分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一像素的灰度值表示该点的海

  • OpenCV基于距离变换和分水岭实现图像分割

    目录 一.图像分割 二.基于距离变换和分水岭的图像分割 代码实现 图像处理效果 一.图像分割 图像分割是根据灰度.颜色.纹理和形状等特征,把图像分成若干个特定的.具有独特性质的区域,这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性,并提出感兴趣目标的技术和过程. 它是由图像处理到图像分析的关键步骤.从数学角度来看,图像分割是将数字图像划分成互不相交的区域的过程.图像分割的过程也是一个标记过程,即把属于同一区域的像索赋予相同的编号. 其目的是将图像中像素根据一定的规则分为若干(N

  • OpenCV实现图像距离变换

    图像中两个像素之间的距离有多种定义方式,图像处理中常用的距离有欧式距离.街区距离和棋盘距离 欧式距离 略 街区距离 两个像素点X方向和Y方向的距离之和.欧式距离表示的是从一个像素点到另一个像素点的最短距离,然而有时我们并不能以两个点之间连线的方向前进,例如在一个城市内两点之间的连线可能存在障碍物的阻碍,因此从一个点到另一个点需要沿着街道行走,因此这种距离的度量方式被称为街区距离.街区距离就是由一个像素点到另一个像素点需要沿着X方向和Y方向一共行走的距离,数学表示形式如式所示. 棋盘距离 两个像素

  • Python OpenCV基于霍夫圈变换算法检测图像中的圆形

    目录 第一章:霍夫变换检测圆 ① 实例演示1 ② 实例演示2 ③ 霍夫变换函数解析 第二章:Python + opencv 完整检测代码 ① 源代码 ② 运行效果图 第一章:霍夫变换检测圆 ① 实例演示1 这个是设定半径范围 0-50 后的效果. ② 实例演示2 这个是设定半径范围 50-70 后的效果,因为原图稍微大一点,半径也大了一些. ③ 霍夫变换函数解析 cv.HoughCircles() 方法 参数分别为:image.method.dp.minDist.param1.param2.mi

  • java图像处理之倒角距离变换

    图像处理中的倒角距离变换(Chamfer Distance Transform)在对象匹配识别中经常用到,算法基本上是基于3x3的窗口来生成每个像素的距离值,分为两步完成距离变换,第一步从左上角开始,从左向右.从上到下移动窗口扫描每个像素,检测在中心像素x的周围0.1.2.3四个像素,保存最小距离与位置作为结果,图示如下: 第二步从底向上.从右向左,对每个像素,检测相邻像素4.5.6.7保存最小距离与位置作为结果,如图示所: 完成这两步以后,得到的结果输出即为倒角距离变换的结果.完整的图像倒角距

  • Python下opencv使用hough变换检测直线与圆

    在数字图像中,往往存在着一些特殊形状的几何图形,像检测马路边一条直线,检测人眼的圆形等等,有时我们需要把这些特定图形检测出来,hough变换就是这样一种检测的工具. Hough变换的原理是将特定图形上的点变换到一组参数空间上,根据参数空间点的累计结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与常熟b,圆就会得到圆心与半径等等). 关于hough变换,核心以及难点就是关于就是有原始空间到参数空间的变换上.以直线检测为例,假设有一条直线L,

  • Python Opencv基于透视变换的图像矫正

    本文实例为大家分享了Python Opencv基于透视变换的图像矫正,供大家参考,具体内容如下 一.自动获取图像顶点变换(获取图像轮廓顶点矫正) 图像旋转校正思路如下 1.以灰度图读入2.腐蚀膨胀,闭合等操作3.二值化图像4.获取图像顶点5.透视矫正 #(基于透视的图像矫正) import cv2 import math import numpy as np def Img_Outline(input_dir):     original_img = cv2.imread(input_dir)

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

  • 浅谈Python Opencv中gamma变换的使用详解

    伽马变换就是用来图像增强,其提升了暗部细节,简单来说就是通过非线性变换,让图像从暴光强度的线性响应变得更接近人眼感受的响应,即将漂白(相机曝光)或过暗(曝光不足)的图片,进行矫正. 伽马变换的基本形式如下: 大于1时,对图像的灰度分布直方图具有拉伸作用(使灰度向高灰度值延展),而小于1时,对图像的灰度分布直方图具有收缩作用(是使灰度向低灰度值方向靠拢). #分道计算每个通道的直方图 img0 = cv2.imread('12.jpg') hist_b = cv2.calcHist([img0],

  • Python OpenCV 基于图像边缘提取的轮廓发现函数

    基础知识铺垫 在图像中,轮廓可以简单的理解为连接具有相同颜色的所有连续点(边界)的曲线,轮廓可用于形状分析和对象检测.识别等领域. 轮廓发现的原理:先通过阈值分割提取目标物体,再通过边缘检测提取目标物体轮廓. 一个轮廓就是一系列的点(像素),这些点构成了一个有序的点集合. 使用 cv2.findContours 函数可以用来检测图像的边缘. 函数原型说明 contours, hierarchy = cv2.findContours(image, mode, method[, contours[,

  • Python OpenCV图像颜色变换示例

    目录 给图像添加颜色 图像按位操作 图像的通道操作 给图像添加颜色 在使用OpenCV操作图像时,有时候需要给图像添加不同的颜色,以达到不同的风格效果.这里介绍的主要是opencv中的cv.applyColorMap()函数. 给图像应用颜色函数cv.applyColorMap(src, colormap, dst=None)src:表示传入的原图:colormap:颜色图类型(17种).可以单独使用,也可以以一个列表的形式批量使用. 以下图举例实现: 直接上代码: # -*-coding:ut

随机推荐