Pytorch中关于BatchNorm2d的参数解释
目录
- BatchNorm2d中的track_running_stats参数
- running_mean和running_var参数
- BatchNorm2d参数讲解
- 总结
BatchNorm2d中的track_running_stats参数
如果BatchNorm2d的参数val,track_running_stats设置False,那么加载预训练后每次模型测试测试集的结果时都不一样;
track_running_stats设置为True时,每次得到的结果都一样。
running_mean和running_var参数
running_mean和running_var参数是根据输入的batch的统计特性计算的,严格来说不算是“学习”到的参数,不过对于整个计算是很重要的。
torch.nn.BatchNorm1d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
BatchNorm2d参数讲解
一般来说pytorch中的模型都是继承nn.Module类的,都有一个属性trainning指定是否是训练状态,训练状态与否将会影响到某些层的参数是否是固定的,比如BN层或者Dropout层。通常用model.train()指定当前模型model为训练状态,model.eval()指定当前模型为测试状态。
同时,BN的API中有几个参数需要比较关心的,一个是affine指定是否需要仿射,还有个是track_running_stats指定是否跟踪当前batch的统计特性。容易出现问题也正好是这三个参数:trainning,affine,track_running_stats。
其中的affine指定是否需要仿射,也就是是否需要上面算式的第四个,如果affine=False则γ=1,β=0 \gamma=1,\beta=0γ=1,β=0,并且不能学习被更新。一般都会设置成affine=True。
trainning和track_running_stats,track_running_stats=True表示跟踪整个训练过程中的batch的统计特性,得到方差和均值,而不只是仅仅依赖与当前输入的batch的统计特性。相反的,如果track_running_stats=False那么就只是计算当前输入的batch的统计特性中的均值和方差了。当在推理阶段的时候,如果track_running_stats=False,此时如果batch_size比较小,那么其统计特性就会和全局统计特性有着较大偏差,可能导致糟糕的效果。
总结
以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。
相关推荐
-
解决Pytorch中Batch Normalization layer踩过的坑
1. 注意momentum的定义 Pytorch中的BN层的动量平滑和常见的动量法计算方式是相反的,默认的momentum=0.1 BN层里的表达式为: 其中γ和β是可以学习的参数.在Pytorch中,BN层的类的参数有: CLASS torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 每个参数具体含义参见文档,需要注意的是,affine定义了BN层的
-
pytorch中LN(LayerNorm)及Relu和其变相的输出操作
主要就是了解一下pytorch中的使用layernorm这种归一化之后的数据变化,以及数据使用relu,prelu,leakyrelu之后的变化. import torch import torch.nn as nn import torch.nn.functional as F class model(nn.Module): def __init__(self): super(model, self).__init__() self.LN=nn.LayerNorm(10,eps=0,eleme
-
pytorch方法测试详解——归一化(BatchNorm2d)
测试代码: import torch import torch.nn as nn m = nn.BatchNorm2d(2,affine=True) #权重w和偏重将被使用 input = torch.randn(1,2,3,4) output = m(input) print("输入图片:") print(input) print("归一化权重:") print(m.weight) print("归一化的偏重:") print(m.bias)
-
Python深度学习理解pytorch神经网络批量归一化
目录 训练深层网络 为什么要批量归一化层呢? 批量归一化层 全连接层 卷积层 预测过程中的批量归一化 使用批量归一化层的LeNet 简明实现 争议 训练深层神经网络是十分困难的,特别是在较短的实践内使他们收敛更加棘手.在本节中,我们将介绍批量归一化(batch normalization),这是一种流行且有效的技术,可持续加速深层网络的收敛速度.在结合之后将介绍的残差快,批量归一化使得研究人员能够训练100层以上的网络. 训练深层网络 为什么要批量归一化层呢? 让我们回顾一下训练神经网络时出现的
-
Pytorch中关于BatchNorm2d的参数解释
目录 BatchNorm2d中的track_running_stats参数 running_mean和running_var参数 BatchNorm2d参数讲解 总结 BatchNorm2d中的track_running_stats参数 如果BatchNorm2d的参数val,track_running_stats设置False,那么加载预训练后每次模型测试测试集的结果时都不一样: track_running_stats设置为True时,每次得到的结果都一样. running_mean和runn
-
在pytorch中查看可训练参数的例子
pytorch中我们有时候可能需要设定某些变量是参与训练的,这时候就需要查看哪些是可训练参数,以确定这些设置是成功的. pytorch中model.parameters()函数定义如下: def parameters(self): r"""Returns an iterator over module parameters. This is typically passed to an optimizer. Yields: Parameter: module paramete
-
pytorch中dataloader 的sampler 参数详解
目录 1. dataloader() 初始化函数 2. shuffle 与sample 之间的关系 3. sample 的定义方法 3.1 sampler 参数的使用 4. batch 生成过程 1. dataloader() 初始化函数 def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_mem
-
pytorch 中forward 的用法与解释说明
前言 最近在使用pytorch的时候,模型训练时,不需要使用forward,只要在实例化一个对象中传入对应的参数就可以自动调用 forward 函数 即: forward 的使用 class Module(nn.Module): def __init__(self): super(Module, self).__init__() # ...... def forward(self, x): # ...... return x data = ..... #输入数据 # 实例化一个对象 module
-
BatchNorm2d原理、作用及pytorch中BatchNorm2d函数的参数使用
目录 BN原理.作用 函数参数讲解 总结 BN原理.作用 函数参数讲解 BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) 1.num_features:一般输入参数的shape为batch_size*num_features*height*width,即为其中特征的数量,即为输入BN层的通道数: 2.eps:分母中添加的一个值,目的是为了计算的稳定性,默认为:1e-5,避免分母为0:
-
浅谈Pytorch中的自动求导函数backward()所需参数的含义
正常来说backward( )函数是要传入参数的,一直没弄明白backward需要传入的参数具体含义,但是没关系,生命在与折腾,咱们来折腾一下,嘿嘿. 对标量自动求导 首先,如果out.backward()中的out是一个标量的话(相当于一个神经网络有一个样本,这个样本有两个属性,神经网络有一个输出)那么此时我的backward函数是不需要输入任何参数的. import torch from torch.autograd import Variable a = Variable(torch.Te
-
PyTorch中的参数类torch.nn.Parameter()详解
目录 前言 分析 ViT中nn.Parameter()的实验 其他解释 参考: 总结 前言 今天来聊一下PyTorch中的torch.nn.Parameter()这个函数,笔者第一次见的时候也是大概能理解函数的用途,但是具体实现原理细节也是云里雾里,在参考了几篇博文,做过几个实验之后算是清晰了,本文在记录的同时希望给后来人一个参考,欢迎留言讨论. 分析 先看其名,parameter,中文意为参数.我们知道,使用PyTorch训练神经网络时,本质上就是训练一个函数,这个函数输入一个数据(如CV中输
-
MySQL5.7中 performance和sys schema中的监控参数解释(推荐)
1.performance schema:介绍 在MySQL5.7中,performance schema有很大改进,包括引入大量新加入的监控项.降低占用空间和负载,以及通过新的sys schema机制显著提升易用性.在监控方面,performance schema有如下功能: ①:元数据锁: 对于了解会话之间元数据锁的依赖关系至关重要.从MySQL5.7.3开始,就可以通过metadata_locks表来了解元数据锁的相关信息: --哪些会话拥有哪些元数据锁 --哪些会话正在等待元数据锁
-
pytorch 在网络中添加可训练参数,修改预训练权重文件的方法
实践中,针对不同的任务需求,我们经常会在现成的网络结构上做一定的修改来实现特定的目的. 假如我们现在有一个简单的两层感知机网络: # -*- coding: utf-8 -*- import torch from torch.autograd import Variable import torch.optim as optim x = Variable(torch.FloatTensor([1, 2, 3])).cuda() y = Variable(torch.FloatTensor([4,
-
关于pytorch中网络loss传播和参数更新的理解
相比于2018年,在ICLR2019提交论文中,提及不同框架的论文数量发生了极大变化,网友发现,提及tensorflow的论文数量从2018年的228篇略微提升到了266篇,keras从42提升到56,但是pytorch的数量从87篇提升到了252篇. TensorFlow: 228--->266 Keras: 42--->56 Pytorch: 87--->252 在使用pytorch中,自己有一些思考,如下: 1. loss计算和反向传播 import torch.nn as nn
随机推荐
- php连接函数implode与分割explode的深入解析
- 如何删除docker-register镜像及none无效镜像详解
- 最全的mysql 5.7.13 安装配置方法图文教程(linux) 强烈推荐!
- 类之Prototype.js学习
- emapicn.exe,winpac.exe恶意插件疯弹广告解决方法
- Java异常处理运行时异常(RuntimeException)详解及实例
- asp.net AutoCompleteExtender的一个简单例子代码
- PHP获取文件夹内文件数的方法
- GET方法URL中传递中文参数乱码的解决方法
- 详解PHP中cookie和session的区别及cookie和session用法小结
- C#检查键盘大小写锁定状态的方法
- mysqldump加-w参数备份数据时需要注意的事项
- 简单实用的反馈表单无刷新提交带验证
- 浅谈关于Java的GC垃圾回收器的一些基本概念
- Sql Server基本函数
- 跨数据库实现数据交流
- Java TokenProcessor令牌校验工具类
- 浅谈07网站收益的新出路
- php+xml编程之SimpleXML的应用实例
- 微信小程序实现选项卡功能