Java实现堆排序(Heapsort)实例代码

代码如下:

import java.util.Arrays;

public class HeapSort {

public static void heapSort(DataWraper[] data){
        System.out.println("开始排序");
        int arrayLength=data.length;
        //循环建堆
        for(int i=0;i<arrayLength-1;i++){
            //建堆
            buildMaxHeap(data,arrayLength-1-i);
            //交换堆顶和最后一个元素
            swap(data,0,arrayLength-1-i);
            System.out.println(Arrays.toString(data));
        }
    }

private static void swap(DataWraper[] data, int i, int j) {
        // TODO Auto-generated method stub
        DataWraper tmp=data[i];
        data[i]=data[j];
        data[j]=tmp;
    }
    //对data数组从0到lastIndex建大顶堆
    private static void buildMaxHeap(DataWraper[] data, int lastIndex) {
        // TODO Auto-generated method stub
        //从lastIndex处节点(最后一个节点)的父节点开始
        for(int i=(lastIndex-1)/2;i>=0;i--){
            //k保存正在判断的节点
            int k=i;
            //如果当前k节点的子节点存在
            while(k*2+1<=lastIndex){
                //k节点的左子节点的索引
                int biggerIndex=2*k+1;
                //如果biggerIndex小于lastIndex,即biggerIndex+1代表的k节点的右子节点存在
                if(biggerIndex<lastIndex){
                    //若果右子节点的值较大
                    if(data[biggerIndex].compareTo(data[biggerIndex+1])<0){
                        //biggerIndex总是记录较大子节点的索引
                        biggerIndex++;
                    }
                }
                //如果k节点的值小于其较大的子节点的值
                if(data[k].compareTo(data[biggerIndex])<0){
                    //交换他们
                    swap(data,k,biggerIndex);
                    //将biggerIndex赋予k,开始while循环的下一次循环,重新保证k节点的值大于其左右子节点的值
                    k=biggerIndex;
                }else{
                    break;
                }
            }
        }
    }

public static void main(String[] args) {
        // TODO Auto-generated method stub
        DataWraper [] data={
                new DataWraper(21, ""),
                new DataWraper(30, ""),
                new DataWraper(49, ""),
                new DataWraper(30, "*"),
                new DataWraper(16, ""),
                new DataWraper(9, ""),

};
        System.out.println("排序之前:\n"+Arrays.toString(data));
        heapSort(data);
        System.out.println("排序之后:\n"+Arrays.toString(data));
    }

}

结果:

排序之前:
[21, 30, 49, 30*, 16, 9]
开始排序
[9, 30, 21, 30*, 16, 49]
[16, 30*, 21, 9, 30, 49]
[9, 16, 21, 30*, 30, 49]
[9, 16, 21, 30*, 30, 49]
[9, 16, 21, 30*, 30, 49]
排序之后:
[9, 16, 21, 30*, 30, 49]

(0)

相关推荐

  • 深入解析堆排序的算法思想及Java代码的实现演示

    一.基础知识 我们通常所说的堆是指二叉堆,二叉堆又称完全二叉树或者叫近似完全二叉树.二叉堆又分为最大堆和最小堆. 堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法,它是选择排序的一种.可以利用数组的特点快速定位指定索引的元素.数组可以根据索引直接获取元素,时间复杂度为O(1),也就是常量,因此对于取值效率极高. 最大堆的特性如下: 父结点的键值总是大于或者等于任何一个子节点的键值 每个结点的左子树和右子树都是一个最大堆 最小堆的特性如下: 父结点的键值总是小于或者等于任何一个

  • Java各种排序算法汇总(冒泡,选择,归并,希尔及堆排序等)

    本文实例汇总了Java各种排序算法.分享给大家供大家参考,具体如下: 1. 冒泡排序: public class SortTest { public static void main(String[] args) { int[] a = {345,7,32,5,4,-1,3,12,23,110,45645,321,456,78,-1,78,78,32,444,345}; show(a); bubbleSort(a); show(a); } private static void bubbleSo

  • Java 归并排序算法、堆排序算法实例详解

    基本思想: 归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的.然后再把有序子序列合并为整体有序序列. 归并排序示例: 合并方法: 设r[i-n]由两个有序子表r[i-m]和r[m+1-n]组成,两个子表长度分别为n-i +1.n-m. j=m+1:k=i:i=i; //置两个子表的起始下标及辅助数组的起始下标 若i>m 或j>n,转⑷ //其中一个子表已合并完,比较选取结束 //选取r[i]和r[j]较小的存入辅助数组

  • Java排序算法总结之堆排序

    本文实例讲述了Java排序算法总结之堆排序.分享给大家供大家参考.具体分析如下: 1991年计算机先驱奖获得者.斯坦福大学计算机科学系教授罗伯特·弗洛伊德(Robert W.Floyd)和威廉姆斯(J.Williams)在1964年共同发明了著名的堆排序算法( Heap Sort ).本文主要介绍堆排序用Java来实现. 堆积排序(Heapsort)是指利用堆积树(堆)这种资料结构所设计的一种排序算法,可以利用数组的特点快速定位指定索引的元素.堆排序是不稳定的排序方法,辅助空间为O(1), 最坏

  • 详解堆排序算法原理及Java版的代码实现

    概述 堆排序是一种树形选择排序,是对直接选择排序的有效改进. 堆的定义如下:具有n个元素的序列(k1,k2,...,kn), 当且仅当满足: 时称之为堆.由堆的定义可以看出,堆顶元素(即第一个元素)必为最小项(小顶堆)或最大项(大顶堆). 若以一维数组存储一个堆,则堆对应一棵完全二叉树,且所有非叶结点(有子女的结点)的值均不大于(或不小于)其子女的值,根结点(堆顶元素)的值是最小(或最大)的. (a)大顶堆序列:(96, 83, 27, 38, 11, 09) (b)小顶堆序列:(12, 36,

  • java 数据结构之堆排序(HeapSort)详解及实例

    1 堆排序 堆是一种重要的数据结构,分为大根堆和小根堆,是完全二叉树, 底层如果用数组存储数据的话,假设某个元素为序号为i(Java数组从0开始,i为0到n-1),如果它有左子树,那么左子树的位置是2i+1,如果有右子树,右子树的位置是2i+2,如果有父节点,父节点的位置是(n-1)/2取整.最大堆的任意子树根节点不小于任意子结点,最小堆的根节点不大于任意子结点. 所谓堆排序就是利用堆这种数据结构的性质来对数组进行排序,在数组的非降序排序中,需要使用的就是大根堆,因为根据大根堆的性质可知,最大的

  • JAVA算法起步之堆排序实例

    学习堆排序,首先需要明白堆的概念,堆是一个数组.可以近似当做完全二叉树的数组存储方式.但是跟他还有其他的性质,就是类似于二叉排序树.有最大堆跟最小堆之分,最大堆是指根节点的值都大于子节点的值,而最小堆的是根节点的值小于其子节点的值.堆排序一般用的是最大堆,而最小堆可以构造优先队列.堆里面有一个方法是用来维护堆的性质,也就是我们下面代码中的maxheap方法,这是维护最大堆性质的方法,第一个参数就是堆也就是数组,第二个参数是调整堆的具体节点位置,可能这个节点的值不符合最大堆的性质,那么这个值得位置

  • Java堆排序算法详解

    堆是数据结构中的一种重要结构,了解"堆"的概念和操作,可以帮助我们快速地掌握堆排序. 堆的概念 堆是一种特殊的完全二叉树(complete binary tree).如果一棵完全二叉树的所有节点的值都不小于其子节点,称之为大根堆(或大顶堆):所有节点的值都不大于其子节点,称之为小根堆(或小顶堆). 在数组(在0号下标存储根节点)中,容易得到下面的式子(这两个式子很重要): 1.下标为i的节点,父节点坐标为(i-1)/2: 2.下标为i的节点,左子节点坐标为2*i+1,右子节点为2*i+

  • 堆排序算法的讲解及Java版实现

    堆是数据结构中的一种重要结构,了解了"堆"的概念和操作,可以快速掌握堆排序. 堆的概念 堆是一种特殊的完全二叉树(complete binary tree).如果一棵完全二叉树的所有节点的值都不小于其子节点,称之为大根堆(或大顶堆):所有节点的值都不大于其子节点,称之为小根堆(或小顶堆). 在数组(在0号下标存储根节点)中,容易得到下面的式子(这两个式子很重要): 1.下标为i的节点,父节点坐标为(i-1)/2: 2.下标为i的节点,左子节点坐标为2*i+1,右子节点为2*i+2. 堆

  • java堆排序原理及算法实现

    从堆排序的简介到堆排序的算法实现等如下: 1. 简介 堆排序是建立在堆这种数据结构基础上的选择排序,是原址排序,时间复杂度O(nlogn),堆排序并不是一种稳定的排序方式.堆排序中通常使用的堆为最大堆. 2. 堆的定义 堆是一种数据结构,是一颗特殊的完全二叉树,通常分为最大堆和最小堆.最大堆的定义为根结点最大,且根结点左右子树都是最大堆:同样,最小堆的定义为根结点最小,且根结点左右子树均为最小堆. 最大堆满足其每一个父结点均大于其左右子结点,最小堆则满足其每一个父结点均小于其左右子结点. 3.

随机推荐