详解C++中的this指针与常对象

C++ this指针详解
this 是C++中的一个关键字,也是一个常量指针,指向当前对象(具体说是当前对象的首地址)。通过 this,可以访问当前对象的成员变量和成员函数。
所谓当前对象,就是正在使用的对象,例如对于stu.say();,stu 就是当前对象,系统正在访问 stu 的成员函数 say()。
假设 this 指向 stu 对象,那么下面的语句中,this 就和 pStu 的值相同:

Student stu; //通过Student类来创建对象
Student *pStu = &stu;

[示例] 通过 this 来访问成员变量:

class Student{
private:
  char *name;
  int age;
  float score;
public:
  void setname(char *);
  void setage(int);
  void setscore(float);
};
void Student::setname(char *name){
  this->name = name;
}
void Student::setage(int age){
  this->age = age;
}
void Student::setscore(float score){
  this->score = score;
}

本例中,函数参数和成员变量重名是没有问题的,因为通过 this 访问的是成员变量,而没有 this 的变量是函数内部的局部变量。例如对于this->name = name;语句,赋值号左边是类的成员变量,右边是 setname 函数的局部变量,也就是参数。

下面是一个完整的例子:

#include <iostream>
using namespace std;
class Student{
private:
  char *name;
  int age;
  float score;
public:
  void setname(char *);
  void setage(int);
  void setscore(float);
  void say();
};
void Student::setname(char *name){
  this->name = name;
}
void Student::setage(int age){
  this->age = age;
}
void Student::setscore(float score){
  this->score = score;
}
void Student::say(){
  cout<<this->name<<"的年龄是 "<<this->age<<",成绩是 "<<this->score<<endl;
}
int main(){
  Student stu1;
  stu1.setname("小明");
  stu1.setage(15);
  stu1.setscore(90.5f);
  stu1.say();

  Student stu2;
  stu2.setname("李磊");
  stu2.setage(16);
  stu2.setscore(80);
  stu2.say();
  return 0;
}

运行结果:

小明的年龄是 15,成绩是 90.5
李磊的年龄是 16,成绩是 80

对象和普通变量类似;每个对象都占用若干字节的内存,用来保存成员变量的值,不同对象占用的内存互不重叠,所以操作对象A不会影响对象B。

上例中,创建对象 stu1 时,this 指针就指向了 stu1 所在内存的首字节,它的值和 &stu1 是相同的;创建对象 stu2 时,this 等于 &stu2;创建对象 stu3 时也一样。

我们不妨来证明一下,给 Student 类添加一个成员函数,输出 this 的值,如下所示:

void Student::printThis(){
  cout<<this<<endl;
}

然后在 main 函数中创建对象并调用 printThis:

Student stu1, *pStu1 = &stu1;
stu1.printThis();
cout<<pStu1<<endl;
Student stu2, *pStu2 = &stu2;
stu2.printThis();
cout<<pStu2<<endl;

运行结果:

0x28ff30
0x28ff30
0x28ff10
0x28ff10

可以发现,this 确实指向了当前对象的首地址,而且对于不同的对象,this 的值也不一样。

几点注意:
this 是常量指针,它的值是不能被修改的,一切企图修改该指针的操作,如赋值、递增、递减等都是不允许的。
this 只能在成员函数内部使用,其他地方没有意义,也是非法的。
只有当对象被创建后 this 才有意义,因此不能在 static 成员函数中使用,后续会讲到。
this 到底是什么

实际上,this 指针是作为函数的参数隐式传递的,它并不出现在参数列表中,调用成员函数时,系统自动获取当前对象的地址,赋值给 this,完成参数的传递,无需用户干预。

this 作为隐式参数,本质上是成员函数的局部变量,不占用对象的内存,只有在发生成员函数调用时才会给 this 赋值,函数调用结束后,this 被销毁。

正因为 this 是参数,表示对象首地址,所以只能在函数内部使用,并且对象被实例化以后才有意义。

C++常对象及其成员
C++虽然采取了不少有效的措施(如设private保护)以增加数据的安全性,但是有些数据却往往是共享的,人们可以在不同的场合通过不同的途径访问同一个数据对象。有时在无意之中的误操作会改变有关数据的状况,而这是人们所不希望出现的。

既要使数据能在一定范围内共享,又要保证它不被任意修改,这时可以使用const,即把有关的数据定义为常量。
常对象

在定义对象时指定对象为常对象。常对象必须要有初值,如:

  Time const t1(12,34,46); //t1是常对象

这样,在所有的场合中,对象t1中的所有成员的值都不能被修改。凡希望保证数据成员不被改变的对象,可以声明为常对象。

定义常对象的一般形式为:

  类名 const 对象名[(实参表列)];

也可以把const写在最左面:

  const 类名 对象名[(实参表列)];

二者等价。

如果一个对象被声明为常对象,则不能调用该对象的非const型的成员函数(除了由系统自动调用的隐式的构造函数和析构函数)。例如,对于例9.7中已定义的Time类,如果有

  const Time t1(10,15,36); //定义常对象t1
  t1.get_time( ); //企图调用常对象t1中的非const型成员函数,非法

这是为了防止这些函数会修改常对象中数据成员的值。

不能仅依靠编程者的细心来保证程序不出错,编译系统充分考虑到可能出现的情况,对不安全的因素予以拦截。现在,编译系统只检查函数的声明,只要发现调用了常对象的成员函数,而且该函数未被声明为const,就报错,提请编程者注意。

引用常对象中的数据成员很简单,只需将该成员函数声明为const即可。如:

  void get_time( ) const ; //将函数声明为const

这表示get_time是一个const型函数,即常成员函数。

常成员函数可以访问常对象中的数据成员,但仍然不允许修改常对象中数据成员的值。有时在编程时有要求,一定要修改常对象中的某个数据成员的值,ANSI C++考虑到实际编程时的需要,对此作了特殊的处理,对该数据成员声明为mutable,如:

  mutable int count;

把count声明为可变的数据成员,这样就可以用声明为const的成员函数来修改它的值。
常对象成员

可以将对象的成员声明为const,包括常数据成员和常成员函数。

1) 常数据成员
其作用和用法与一般常变量相似,用关键字const来声明常数据成员。常数据成员的值是不能改变的。

有一点要注意: 只能通过构造函数的参数初始化表对常数据成员进行初始化。如在类体中定义了常数据成员hour:

  const int hour; //声明hour为常数据成员

不能采用在构造函数中对常数据成员赋初值的方法,下面的做法是非法的:

  Time::Time(int h){
    hour=h;
  } // 非法

因为常数据成员是不能被赋值的。

在类外定义构造函数,应写成以下形式:

  Time::Time(int h):hour(h){} //通过参数初始化表对常数据成员hour初始化

常对象的数据成员都是常数据成员,因此常对象的构造函数只能用参数初始化表对常数据成员进行初始化。

2) 常成员函数
前面已提到,一般的成员函数可以引用本类中的非const数据成员,也可以修改它们。如果将成员函数声明为常成员函数,则只能引用本类中的数据成员,而不能修改它们,例如只用于输出数据等。如

  void get_time( ) const ; //注意const的位置在函数名和括号之后

const是函数类型的一部分,在声明函数和定义函数时都要有const关键字,在调用时不必加const。常成员函数可以引用const数据成员,也可以引用非const的数据成员。const数据成员可以被const成员函数引用,也可以被非const的成员函数引用。具体情况可以用下表表示。

那么怎样利用常成员函数呢?
如果在一个类中,有些数据成员的值允许改变,另一些数据成员的值不允许改变,则可以将一部分数据成员声明为const,以保证其值不被改变,可以用非const的成员函数引用这些数据成员的值,并修改非const数据成员的值。
如果要求所有的数据成员的值都不允许改变,则可以将所有的数据成员声明为const,或将对象声明为const(常对象),然后用const成员函数引用数据成员,这样起到“双保险”的作用,切实保证
如果已定义了一个常对象,只能调用其中的const成员函数,而不能调用非const成员函数(不论这些函数是否会修改对象中的数据)。这是为了保证数据的安全。如果需要访问对象中的数据成员,可将常对象中所有成员函数都声明为const成员函数,但应确保在函数中不修改对象中的数据成员。

不要误认为常对象中的成员函数都是常成员函数。常对象只保证其数据成员是常数据成员,其值不被修改。如果在常对象中的成员函数未加const声明,编译系统把它作为非const成员函数处理。

还有一点要指出,常成员函数不能调用另一个非const成员函数。

(0)

相关推荐

  • 深度理解c++中的this指针

    1.this指针,就是一个指向当前对象的指针.我们知道,定义出一个类,它在内存中是不占空间的,只有定义了该类类型的对象时,系统就会为该对象分配一段存储空间,这段空间里只存储成员变量,对于成员函数,是存放在代码区的.(复习:内存分为5大区:静态区.常量区.栈.堆.代码区).下边给出一个日期类,通过这个实例,深度理解this指针. #define _CRT_SECURE_NO_WARNINGS 1 #include using namespace std; class Date { public:

  • C++编程指向成员的指针以及this指针的基本使用指南

    指向成员的指针 指向成员的指针的声明是指针声明的特例.使用以下序列来声明它们: [storage-class-specifiers] [cv-qualifiers] type-specifiers [ms-modifier] qualified-name ::* [cv-qualifiers] identifier [= & qualified-name :: member-name]; 声明说明符: 可选存储类说明符. 可选 const 和/或 volatile 说明符. 类型说明符:类型的名

  • C/C++静态类和this指针详解及实例代码

     C/C++静态类和this指针详解 1.静态类 C++的静态成员不仅可以通过对象来访问,还可以直接通过类名来访问. class CBook{ public: static double price;//需要通过类外来进行初始化 } int main(void){ CBook book; book.price;//通过对象来访问 CBook::price//通过类名来访问 return 0; } 静态成员变量 对应静态成员有以下几点需要注意: (1)静态数据成员可以是当前类的类型,而其他数据成员

  • C++中this指针的用法及介绍

    this指针只能在一个类的成员函数中调用,它表示当前对象的地址.下面是一个例子:   复制代码 代码如下: void Date::setMonth( int mn )     {      month = mn; // 这三句是等价的      this->month = mn;      (*this).month = mn;     } 1. this只能在成员函数中使用.全局函数,静态函数都不能使用this.实际上,成员函数默认第一个参数为T* const register this.如:

  • C++基础之this指针与另一种“多态”

    一.引入定义一个类的对象,首先系统已经给这个对象分配了空间,然后会调用构造函数. 一个类有多个对象,当程序中调用对象的某个函数时,有可能要访问到这个对象的成员变量.而对于同一个类的每一个对象,都是共享同一份类函数.对象有单独的变量,但是没有单独的函数,所以当调用函数时,系统必须让函数知道这是哪个对象的操作,从而确定成员变量是哪个对象的.这种用于对成员变量归属对像进行区分的东西,就叫做this指针.事实上它就是对象的地址,这一点从反汇编出来的代码可以看到. 二.分析1.测试代码: 复制代码 代码如

  • C++中this指针用法详解及实例

    C++中this指针用法详解及实例 概要: 本文简单介绍this指针的基本概念,并通过一个实际例子介绍this指针用于防止变量命名冲突和用于类中层叠式调用的两个用法. this指针概览 C++中,每个类 对应了一个对象,每个对象指向自己所在内存地址的方式即为使用this指针.在类中,this指针作为一个变量通过编译器隐式传递给非暂存(non-static)成员函数.因为this指针不是对象本身,因此sizeof函数并不能用于确定this指针所对应的对象大小.this指针的具体类型与具体对象的类型

  • C++ 中的this指针详解及实例

    C++ this 指针详解 学习 C++ 的指针既简单又有趣.通过指针,可以简化一些 C++ 编程任务的执行,还有一些任务,如动态内存分配,没有指针是无法执行的.所以,想要成为一名优秀的 C++ 程序员,学习指针是很有必要的. 正如您所知道的,每一个变量都有一个内存位置,每一个内存位置都定义了可使用连字号(&)运算符访问的地址,它表示了在内存中的一个地址. this指针是类的一个自动生成.自动隐蔽的私有成员,它存在于类的非静态成员中,指向被调用函数所在的对象. 全局仅有一个this指针,当一个对

  • 详解C++中的this指针与常对象

    C++ this指针详解 this 是C++中的一个关键字,也是一个常量指针,指向当前对象(具体说是当前对象的首地址).通过 this,可以访问当前对象的成员变量和成员函数. 所谓当前对象,就是正在使用的对象,例如对于stu.say();,stu 就是当前对象,系统正在访问 stu 的成员函数 say(). 假设 this 指向 stu 对象,那么下面的语句中,this 就和 pStu 的值相同: Student stu; //通过Student类来创建对象 Student *pStu = &s

  • 详解JavaScript中的数组合并方法和对象合并方法

    1 数组合并 1.1 concat 方法 var a=[1,2,3],b=[4,5,6]; var c=a.concat(b); console.log(c);// 1,2,3,4,5,6 console.log(a);// 1,2,3 不改变本身 1.2 循环遍历 var arr1=['a','b']; var arr2=['c','d','e']; for(var i=0;i<arr2.length;i++){ arr1.push(arr2[i]) } console.log(arr1);/

  • 详解Python中的__getitem__方法与slice对象的切片操作

    Fib实例虽然能作用于for循环,看起来和list有点像,但是,把它当成list来使用还是不行,比如,取第5个元素: >>> Fib()[5] Traceback (most recent call last): File "<stdin>", line 1, in <module> TypeError: 'Fib' object does not support indexing 要表现得像list那样按照下标取出元素,需要实现__getit

  • 详解Swift中对C语言接口缓存的使用以及数组与字符串转为指针类型的方法

    详解Swift中对C语言接口缓存的使用以及数组与字符串转为指针类型的方法 由于Swift编程语言属于上层编程语言,而Swift中由于为了低层的高性能计算接口,所以往往需要C语言中的指针类型,由此,在Swift编程语言刚诞生的时候就有了UnsafePointer与UnsafeMutablePointer类型,分别对应为const Type*类型与Type *类型. 而在Swift编程语言中,由于一般数组(Array)对象都无法直接用于C语言中含有指针类型的函数参数(比如:void*),所以往往需要

  • 详解C++中String类模拟实现以及深拷贝浅拷贝

    详解C++中String类模拟实现以及深拷贝浅拷贝 在C语言中/C++中,字符串是一个应用很广泛的类型,也是很基础的类型,C语言并没有直接处理字符串的操作而是采用字符指针和字符串数组进行操作,而在C++中标准库为我们封装了一个字符串的类供我们使用,使用需要#inlcude <string>头文件.我们也可以自己模拟实现一个简单的String类. 在模拟实现String类的过程中,不可避免的会遇到深拷贝浅拷贝的问题,下面就深拷贝浅拷贝做一个简介.所谓深拷贝浅拷贝,简单来说就是浅拷贝只是简单的将值

  • 详解Kotlin中的变量和方法

    详解Kotlin中的变量和方法 变量 Kotlin 有两个关键字定义变量:var 和 val, 变量的类型在后面. var 定义的是可变变量,变量可以被重复赋值.val 定义的是只读变量,相当于java的final变量. 变量的类型,如果可以根据赋值推测,可以省略. var name: String = "jason" name = "jame" val max = 10 常量 Java 定义常量用关键字 static final, Kotlin 没有static,

  • 详解MySQL中EXPLAIN解释命令及用法讲解

    1,情景描述:同事教我在mysql中用explain,于是查看了一番返回内容的含义 2,现就有用处的内容做如下记录: 1,explain显示了mysql如何使用索引来处理select语句以及连接表.可以帮助选择更好的索引和写出更优化的查询语句. 使用方法,在select语句前加上explain就可以了: explain select count(DISTINCT uc_userid) as user_login from user_char_daily_gameapp_11 where uc_d

  • 详解go中的引用类型

    值类型和引用类型 值类型:int.float.bool和string这些类型都属于值类型,使用这些类型的变量直接指向存在内存中的值,值类型的变量的值存储在栈中.当使用等号=将一个变量的值赋给另一个变量时,如 j = i ,实际上是在内存中将 i 的值进行了拷贝.可以通过 &i 获取变量 i 的内存地址.  值拷贝 引用类型:特指slice.map.channel这三种预定义类型.引用类型拥有更复杂的存储结构:(1)分配内存 (2)初始化一系列属性等一个引用类型的变量r1存储的是r1的值所在的内存

  • 详解C++中的析构函数

    简介 析构函数(Destructors),是对象的成员函数,没有返回值也没有参数,且一个类只有一个析构函数,当对象被销毁的时候调用,被销毁通常有这么几个情况. 函数执行结束 程序执行结束 程序块包含的局部变量 delete操作 什么时候要自己写析构函数? 编译器会自动创建默认的析构函数,通常都没有问题,但是当我们在类中动态分配了内存空间时,我们需要手段的回收这块空间,防止内存溢出.就像这样 class String { private: char *s; int size; public: St

  • 详解c++中的类型识别

    1.类型识别的相关概念 (1)类型识别的作用 类型识别是面向对象中引入的一个新概念,主要用来判断赋值兼容性原则中的类型问题,即此时的数据类型到底是基类类型还是派生类类型? 当基类指针指向子类对象 或者基类引用成为子类对象的别名 时,就需要使用类型识别: Base *p = new Derived(); Base &r = *p 对于上面的语句,我们可以这样认识,指针p是Base类型,但是P 又指向了一个新的Derived类型,此时很难判断指针P 的数据类型:同理,引用r 本来作为父类的别名而存在

随机推荐