pandas DataFrame的修改方法(值、列、索引)

对于DataFrame的修改操作其实有很多,不单单是某个部分的值的修改,还有一些索引的修改、列名的修改,类型修改等等。我们仅选取部分进行介绍。

一、值的修改

DataFrame的修改方法,其实前面介绍loc方法的时候介绍了一些。

1、 loc方法修改

loc方法实际上是定位某个位置的数据的,但是定位完以后就可以对此位置的数据进行修改,使用此方法可以对DataFrame进行的修改如下:
1.对某行、某N行进行修改;
2.对某列、某N列进行修改;
3.对横坐标为某行或某N行,纵坐标为某列或者某N列的数据进行修改;

可以看出基本用loc方法我们对DataFrame可以进行任意修改了。

1.1 对某行、某N行进行修改

# 对第1行进行修改
test_dict_df.loc[1:1,('english','id','math','name')]=[90,2,100,'Alice_m']
# 对第0行到第1行进行修改
test_dict_df.loc[0:1,('english','id','math','name')]=[[90,1,100,'Alice_m'],[70,2,100,'Bob']]
# 对第0行和第2行进行修改
test_dict_df.loc[0:3:2,('english','id','math','name')]=[[90,1,100,'Alice_m'],[70,2,100,'Bob']]

可以看出具体的方法就是用loc方法,对某行或者某N行进行定位,然后赋予合适的格式的值就可以了。

1.2 对某列、某N列进行修改

学会了使用loc方法对行的修改,那触类旁通,对列的修改也很简单了。对列修改也就是修改此列的所有行。

# 对第english列进行修改
test_dict_df.loc[:,('english')]=[90,80,70,90,90,59] #test_dict_df.loc[:,'english']=[90,80,70,90,90,59]
# 对第english列和id列进行修改,注意赋值的写法
test_dict_df.loc[:,('english','id')]=[[90,1],[80,2],[80,2],[80,2],[80,2],[80,2]]

1.3 对某个区域的值进行修改

# 对第1、2行的english列和 id列进行修改
test_dict_df.loc[1:2,('english','id')]=[[38,2],[23,2]]

1.4总结

可以看到loc方法就是,只要你能选到某个或者某个区域的值,然后就可以对此部分的值进行修改。但是要注意赋值部分的组织方式。

2、 iloc、at、iat方法修改

类比于上面的方式,其实只要能选择,都是可以修改的。选择方法可以看pandas DataFrame的查询(选择)篇。

二、列名的修改

1、直接全部更改

这种方法是对DataFrame的列名进行重新赋值,比较暴力直接。

test_dict_df.columns=['english_new','id_new','math_new','name_new']

2、使用rename方法

这种方法是比较推荐的,通过rename方法,注意参数inplace=True的时候,才能真正的在原来的DataFrame上进行修改。

test_dict_df.rename(columns={'english_new':'english'},inplace=True)

三、索引的修改

1、修改索引名称

上面的rename方法,如果不写columns=xx就默认修改索引了 。

test_dict_df.rename({0:'english1'},inplace=True)

2、重置索引

通过reset_index()方法我们可以重置索引,drop参数为True时,直接丢弃原来的索引,否则原来的索引新生成一列名为'index'的列:

test_dict_df.reset_index(inplace=True,drop=True)

3、设置其他列为索引

当然我们也可以用其他列为索引,通过set_index()方法:

test_dict_df.set_index('id_new')

四、总结

可以看到,所谓的修改首先要能选择修改的位置,即定位,然后对确定好的位置进行重新赋值,所以我们学会了如何选择数据,也就基本能修改此处的数据。

源代码:github

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • pandas修改DataFrame列名的实现方法

    提出问题 存在一个名为dataset的DataFrame >>> dataset.columns Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.id

  • python pandas.DataFrame选取、修改数据最好用.loc,.iloc,.ix实现

    相信很多人像我一样在学习python,pandas过程中对数据的选取和修改有很大的困惑(也许是深受Matlab)的影响... 到今天终于完全搞清楚了!!! 先手工生出一个数据框吧 import numpy as np import pandas as pd df = pd.DataFrame(np.arange(0,60,2).reshape(10,3),columns=list('abc')) df 是这样子滴 那么这三种选取数据的方式该怎么选择呢? 一.当每列已有column name时,用

  • pandas修改DataFrame列名的方法

    在做数据挖掘的时候,想改一个DataFrame的column名称,所以就查了一下,总结如下: 数据如下: >>>import pandas as pd >>>a = pd.DataFrame({'A':[1,2,3], 'B':[4,5,6], 'C':[7,8,9]}) >>> a A B C 0 1 4 7 1 2 5 8 2 3 6 9 方法一:暴力方法 >>>a.columns = ['a','b','c'] >>

  • Python pandas.DataFrame调整列顺序及修改index名的方法

    1. 从字典创建DataFrame >>> import pandas >>> dict_a = {'user_id':['webbang','webbang','webbang'],'book_id':['3713327','4074636','26873486'],'rating':['4','4','4'],'mark_date':['2017-03-07','2017-03-07','2017-03-07']} >>> df = pandas.

  • pandas DataFrame的修改方法(值、列、索引)

    对于DataFrame的修改操作其实有很多,不单单是某个部分的值的修改,还有一些索引的修改.列名的修改,类型修改等等.我们仅选取部分进行介绍. 一.值的修改 DataFrame的修改方法,其实前面介绍loc方法的时候介绍了一些. 1. loc方法修改 loc方法实际上是定位某个位置的数据的,但是定位完以后就可以对此位置的数据进行修改,使用此方法可以对DataFrame进行的修改如下: 1.对某行.某N行进行修改: 2.对某列.某N列进行修改: 3.对横坐标为某行或某N行,纵坐标为某列或者某N列的

  • Python中pandas dataframe删除一行或一列:drop函数详解

    用法:DataFrame.drop(labels=None,axis=0, index=None, columns=None, inplace=False) 在这里默认:axis=0,指删除index,因此删除columns时要指定axis=1: inplace=False,默认该删除操作不改变原数据,而是返回一个执行删除操作后的新dataframe: inplace=True,则会直接在原数据上进行删除操作,删除后就回不来了. 例子: >>>df = pd.DataFrame(np.a

  • 详解pandas DataFrame的查询方法(loc,iloc,at,iat,ix的用法和区别)

    在操作DataFrame时,肯定会经常用到loc,iloc,at等函数,各个函数看起来差不多,但是还是有很多区别的,我们一起来看下吧. 首先,还是列出一个我们用的DataFrame,注意index一列,如下: 接下来,介绍下各个函数的用法: 1.loc函数 愿意看官方文档的,请戳这里,这里一般最权威. loc函数是基于"标签"选择数据的,但是也可以接受一个boolean的array,对于每个用法,我们从参数方面来一一举例: 1.1 单个label 接受一个"标签"(

  • Python pandas DataFrame数据拼接方法

    目录 前言 DataFrame数据拼接方法一:使用.append()方法. DataFrame数据拼接方法二:使用.concat()方法. 补充:Python同时合并多个DataFrame 总结 前言 在pandas模块中,通常我们都需要对类型为DataFrame的数据进行操作,其中最为常见的操作便是拼接了.比如我们将两个Excel表格中的数据读入,随后拼接完成后保存进一个新的Excel表格文件中.之前查找了相关的博客, 发现网络上鱼龙混杂.有些代码完全无法执行,为了提高效率,这里做一个详细地记

  • Python pandas索引的设置和修改方法

    目录 前言 创建索引 pd.Index pd.IntervalIndex pd.CategoricalIndex pd.DatetimeIndex pd.PeriodIndex pd.TimedeltaIndex 读取数据 set_index reset_index set_axis 操作行索引 操作列索引 rename 字典形式 函数形式 使用案例 按日统计总消费 按日.性别统计小费均值,消费总和 笨方法 总结 前言 本文主要是介绍Pandas中行和列索引的4个函数操作: set_index

  • Pandas DataFrame数据的更改、插入新增的列和行的方法

    一.更改DataFrame的某些值 1.更改DataFrame中的数据,原理是将这部分数据提取出来,重新赋值为新的数据. 2.需要注意的是,数据更改直接针对DataFrame原数据更改,操作无法撤销,如果做出更改,需要对更改条件做确认或对数据进行备份. 代码: import pandas as pd df1 = pd.DataFrame([['Snow','M',22],['Tyrion','M',32],['Sansa','F',18],['Arya','F',14]], columns=['

  • 在Pandas DataFrame中插入一列的方法实例

    目录 引言 示例1:插入新列作为第一列 示例2:插入新列作为中间列 示例3:插入新列作为最后一列 补充:按条件选择分组分别赋值 总结 引言 通常,您可能希望在 Pandas DataFrame 中插入一个新列.幸运的是,使用 pandas insert()函数很容易做到这一点,该函数使用以下语法: insert(loc, column, value, allow_duplicates=False) 在哪里: loc: 插入列的索引.第一列是 0. column: 赋予新列的名称. value:

  • Python Pandas中DataFrame.drop_duplicates()删除重复值详解

    目录 语法 参数 结果展示 扩展:识别重复值 总结 语法 df.drop_duplicates(subset = None, keep = 'first', inplace = False, ignore_index = False) 参数 1.subset:指定的标签或标签序列,仅删除这些列重复值,默认情况为所有列 2.keep:确定要保留的重复值,有以下可选项: first:保留第一次出现的重复值,默认 last:保留最后一次出现的重复值 False:删除所有重复值 3.inplace:是否

  • pandas进阶教程之Dataframe的apply方法

    目录 apply方法介绍 用例1 用例2 用例3 总结 apply方法介绍 方法形式为 apply(func, axis=0, raw=False, result_type=None, agrs=(), **kwargs),沿Dataframe的轴应用func函数. 传递给函数的对象是Series对象,当axis=0时,其索引是Dataframe的索引:当axis=1时,其索引是Dataframe的列. 默认情况下,result_type=None,最终返回的类型是从func函数的返回推断出来的

  • Pandas:DataFrame对象的基础操作方法

    DataFrame对象的创建,修改,合并 import pandas as pd import numpy as np 创建DataFrame对象 # 创建DataFrame对象 df = pd.DataFrame([1, 2, 3, 4, 5], columns=['cols'], index=['a','b','c','d','e']) print df cols a 1 b 2 c 3 d 4 e 5 df2 = pd.DataFrame([[1, 2, 3],[4, 5, 6]], co

随机推荐