在PHP程序中使用Rust扩展的方法

 C或PHP中的Rust

我的基本出发点就是写一些可以编译的Rust代码到一个库里面,并写为它一些C的头文件,在C中为被调用的PHP做一个拓展。虽然并不是很简单,但是很有趣。
Rust FFI(foreign function interface)

我所做的第一件事情就是摆弄Rust与C连接的Rust的外部函数接口。我曾用简单的方法(hello_from_rust)写过一个灵活的库,伴有单一的声明(a pointer to a C char, otherwise known as a string),如下是输入后输出的“Hello from Rust”。

// hello_from_rust.rs
#![crate_type = "staticlib"]

#![feature(libc)]
extern crate libc;
use std::ffi::CStr;

#[no_mangle]
pub extern "C" fn hello_from_rust(name: *const libc::c_char) {
 let buf_name = unsafe { CStr::from_ptr(name).to_bytes() };
 let str_name = String::from_utf8(buf_name.to_vec()).unwrap();
 let c_name = format!("Hello from Rust, {}", str_name);
 println!("{}", c_name);
}

我从C(或其它!)中调用的Rust库拆分它。这有一个接下来会怎样的很好的解释。

编译它会得到.a的一个文件,libhello_from_rust.a。这是一个静态的库,包含它自己所有的依赖关系,而且我们在编译一个C程序的时候链接它,这让我们能做后续的事情。注意:在我们编译后会得到如下输出:

note: link against the following native artifacts when linking against this static library
note: the order and any duplication can be significant on some platforms, and so may need to be preserved
note: library: Systemnote: library: pthread
note: library: c
note: library: m

这就是Rust编译器在我们不使用这个依赖的时候所告诉我们需要链接什么。

从C中调用Rust

既然我们有了一个库,不得不做两件事来保证它从C中可调用。首先,我们需要为它创建一个C的头文件,hello_from_rust.h。然后在我们编译的时候链接到它。

下面是头文件:

// hello_from_rust.h
#ifndef __HELLO
#define __HELLO

void hello_from_rust(const char *name);

#endif

这是一个相当基础的头文件,仅仅为了一个简单的函数提供签名/定义。接着我们需要写一个C程序并使用它。

// hello.c
#include <stdio.h>
#include <stdlib.h>
#include "hello_from_rust.h"

int main(int argc, char *argv[]) {
 hello_from_rust("Jared!");
}

我们通过运行一下代码来编译它:

gcc -Wall -o hello_c hello.c -L /Users/jmcfarland/code/rust/php-hello-rust -lhello_from_rust -lSystem -lpthread -lc -lm

注意在末尾的-lSystem -lpthread -lc -lm告诉gcc不要链接那些“本地的古董”,为了当编译我们的Rust库时Rust编译器可以提供出来。

经运行下面的代码我们可以得到一个二进制的文件:

$ ./hello_c
Hello from Rust, Jared!

漂亮!我们刚才从C中调用了Rust库。现在我们需要理解Rust库是如何进入一个PHP扩展的。

从 php 中调用 c

该部分花了我一些时间来弄明白,在这个世界上,该文档在 php 扩展中并不是最好的。最好的部分是来自绑定一个脚本 ext_skel 的 php 源(大多数代表“扩展骨架”)即生成大多数你需要的样板代码。  你可以通过下载来开始,和未配额的 php 源,把代码写进 php 目录并且运行:

 $ cd ext/
$ ./ext_skel --extname=hello_from_rust

这将生成需要创建 php 扩展的基本骨架。现在,移动你处处想局部地保持你的扩展的文件夹。并且移动你的

  • .rust 源
  • .rust库
  • .c header

进入同一个目录。因此,现在你应该看看像这样的一个目录:

 .
├── CREDITS
├── EXPERIMENTAL
├── config.m4
├── config.w32
├── hello_from_rust.c
├── hello_from_rust.h
├── hello_from_rust.php
├── hello_from_rust.rs
├── libhello_from_rust.a
├── php_hello_from_rust.h
└── tests
 └── 001.phpt

一个目录,11个文件

你可以在 php docs 在上面看到关于这些文件很好的描述。建立一个扩展的文件。我们将通过编辑 config.m4 来开始吧。

不解释,下面就是我的成果:

PHP_ARG_WITH(hello_from_rust, for hello_from_rust support,
[ --with-hello_from_rust    Include hello_from_rust support])

if test "$PHP_HELLO_FROM_RUST" != "no"; then
 PHP_SUBST(HELLO_FROM_RUST_SHARED_LIBADD)

 PHP_ADD_LIBRARY_WITH_PATH(hello_from_rust, ., HELLO_FROM_RUST_SHARED_LIBADD)

 PHP_NEW_EXTENSION(hello_from_rust, hello_from_rust.c, $ext_shared)
fi

正如我所理解的那样,这些是基本的宏命令。但是有关这些宏命令的文档是相当糟糕的(比如:google"PHP_ADD_LIBRARY_WITH_PATH"并没有出现PHP团队所写的结果)。我偶然这个PHP_ADD_LIBRARY_PATH宏命令在有些人所谈论的在一个PHP拓展里链接一个静态库的先前的线程里。在评论中其它的推荐使用的宏命令是在我运行ext_skel后产生的。

既然我们进行了配置设置,我们需要从PHP脚本中实际地调用库。为此我们得修改自动生成的文件,hello_from_rust.c。首先我们添加hello_from_rust.h头文件到包含命令中。然后我们要修改confirm_hello_from_rust_compiled的定义方法。

#include "hello_from_rust.h"

// a bunch of comments and code removed...

PHP_FUNCTION(confirm_hello_from_rust_compiled)
{
 char *arg = NULL;
 int arg_len, len;
 char *strg;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &arg, &arg_len) == FAILURE) {
  return;
 }

 hello_from_rust("Jared (from PHP!!)!");

 len = spprintf(&strg, 0, "Congratulations! You have successfully modified ext/%.78s/config.m4. Module %.78s is now compiled into PHP.", "hello_from_rust", arg);
 RETURN_STRINGL(strg, len, 0);
}

注意:我添加了hello_from_rust("Jared (fromPHP!!)!");。

现在,我们可以试着建立我们的扩展:

$ phpize
$ ./configure
$ sudo make install

就是它,生成我们的元配置,运行生成的配置命令,然后安装该扩展。安装时,我必须亲自使用sudo,因为我的用户并不拥有安装目录的 php 扩展。

现在,我们可以运行它啦!

$ php hello_from_rust.php
Functions available in the test extension:
confirm_hello_from_rust_compiled

Hello from Rust, Jared (from PHP!!)!
Congratulations! You have successfully modified ext/hello_from_rust/config.m4. Module hello_from_rust is now compiled into PHP.
Segmentation fault: 11

还不错,php 已进入我们的 c 扩展,看到我们的应用方法列表并且调用。接着,c 扩展已进入我们的 rust 库,开始打印我们的字符串。那很有趣!但是......那段错误的结局发生了什么?

正如我所提到的,这里是使用了 Rust 相关的 println! 宏,但是我没有对它做进一步的调试。如果我们从我们的 Rust 库中删除并返回一个 char* 替代,段错误就会消失。

这里是 Rust 的代码:
 

代码如下:

#![crate_type = "staticlib"]
 
#![feature(libc)]
extern crate libc;
use std::ffi::{CStr, CString};
 
#[no_mangle]
pub extern "C" fn hello_from_rust(name: *const libc::c_char) -> *const libc::c_char {
    let buf_name = unsafe { CStr::from_ptr(name).to_bytes() };
    let str_name = String::from_utf8(buf_name.to_vec()).unwrap();
    let c_name   = format!("Hello from Rust, {}", str_name);
 
    CString::new(c_name).unwrap().as_ptr()
}

并变更 C 头文件:

#ifndef __HELLO
#define __HELLO

const char * hello_from_rust(const char *name);

#endif

还要变更 C 扩展文件:

PHP_FUNCTION(confirm_hello_from_rust_compiled)
{
 char *arg = NULL;
 int arg_len, len;
 char *strg;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "s", &arg, &arg_len) == FAILURE) {
  return;
 }

 char *str;
 str = hello_from_rust("Jared (from PHP!!)!");
 printf("%s\n", str);

 len = spprintf(&strg, 0, "Congratulations! You have successfully modified ext/%.78s/config.m4. Module %.78s is now compiled into PHP.", "hello_from_rust", arg);
 RETURN_STRINGL(strg, len, 0);
}

无用的微基准

那么为什么你还要这样做?我还真的没有在现实世界里使用过这个。但是我真的认为斐波那契序列算法就是一个好的例子来说明一个PHP拓展如何很基本。通常是直截了当(在Ruby中):

def fib(at) do
 if (at == 1 || at == 0)
  return at
 else
  return fib(at - 1) + fib(at - 2)
 end
end

而且可以通过不使用递归来改善这不好的性能:

def fib(at) do
 if (at == 1 || at == 0)
  return at
 elsif (val = @cache[at]).present?
  return val
 end

 total = 1
 parent = 1
 gp  = 1

 (1..at).each do |i|
  total = parent + gp
  gp  = parent
  parent = total
 end

 return total
end

那么我们围绕它来写两个例子,一个在PHP中,一个在Rust中。看看哪个更快。下面是PHP版:

def fib(at) do
 if (at == 1 || at == 0)
  return at
 elsif (val = @cache[at]).present?
  return val
 end

 total = 1
 parent = 1
 gp  = 1

 (1..at).each do |i|
  total = parent + gp
  gp  = parent
  parent = total
 end

 return total
end

这是它的运行结果:

$ time php php_fib.php

real 0m2.046s
user 0m1.823s
sys 0m0.207s

现在我们来做Rust版。下面是库资源:
 

代码如下:

#![crate_type = "staticlib"]
 
fn fib(at: usize) -> usize {
    if at == 0 {
        return 0;
    } else if at == 1 {
        return 1;
    }
 
    let mut total  = 1;
    let mut parent = 1;
    let mut gp     = 0;
    for _ in 1 .. at {
        total  = parent + gp;
        gp     = parent;
        parent = total;
    }
 
    return total;
}
 
#[no_mangle]
pub extern "C" fn rust_fib(at: usize) -> usize {
    fib(at)
}

注意,我编译的库rustc - O rust_lib.rs使编译器优化(因为我们是这里的标准)。这里是C扩展源(相关摘录):

PHP_FUNCTION(confirm_rust_fib_compiled)
{
 long number;

 if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "l", &number) == FAILURE) {
  return;
 }

 RETURN_LONG(rust_fib(number));
}

运行PHP脚本:

<?php
$br = (php_sapi_name() == "cli")? "":"<br>";

if(!extension_loaded('rust_fib')) {
 dl('rust_fib.' . PHP_SHLIB_SUFFIX);
}

for ($i = 0; $i < 100000; $i ++) {
 confirm_rust_fib_compiled(92);
}
?>

这就是它的运行结果:

$ time php rust_fib.php

real 0m0.586s
user 0m0.342s
sys 0m0.221s

你可以看见它比前者快了三倍!完美的Rust微基准!

(0)

相关推荐

  • PHP安装memcached扩展笔记

    最近在服务器上部缓存系统,记录一下PHP安装memcached扩展. 复制代码 代码如下: # 安装服务端 yum install memcached -y I. launchpad 请于https://launchpad.net/libmemcached/+download下载目前最新版的libmemcached(20150524) 复制代码 代码如下: cd /tmp wget https://launchpad.net/libmemcached/1.0/1.0.18/+download/l

  • php基于curl扩展制作跨平台的restfule 接口

    restfule 接口 适用的平台:跨平台 所依赖:curl扩展 git:https://git.oschina.net/anziguoer/restAPI ApiServer.php <?php /** * @Author: yangyulong * @Email : anziguoer@sina.com * @Date: 2015-04-30 05:38:34 * @Last Modified by: yangyulong * @Last Modified time: 2015-04-30

  • PHP中使用hidef扩展代替define提高性能

    网站需要新加一个常量,打开了本地的config.php文件,想到了几年前测试过的hidef以及apc提升define性能的方案. 我的程序中有对开发.测试.生产服务器分别做了不同的配置,在常量方面则使用了一个数组定义了所有需要定义的常量,然后检测是否有apc_load_constants函数,没有的话,批量define.使用apc时,每增加一个常量,还需要修改一下$key才能生效. 而现在测试.生产服务器php都升级到5.4后,opcode缓存就使用了Zend opcache,不再安装APC.因

  • PHP扩展程序实现守护进程

    一般Server程序都是运行在系统后台,这与普通的交互式命令行程序有很大的区别.glibc里有一个函数daemon.调用此函数,就可使当前进程脱离终端变成一个守护进程,具体内容参见man daemon.PHP中暂时没有此函数,当然如果你有兴趣的话,可以写一个PHP的扩展函数来实现. PHP命令行程序实现守护进程化有2种方法: 一 .使用nohup 复制代码 代码如下: nohup php myprog.php > log.txt & 这里就实现了守护进程化. 单独执行 php myprog.

  • linux下安装php扩展memcache的方法

    memcache 的工作就是在专门的机器的内存里维护一张巨大的hash表,来存储经常被读写的一些数组与文件,从而极大的提高网站的运行效率,减轻后端数据库的读写压力. 实验环境:centos 6.6 x86_64 LAMP环境搭建完毕:php版本5.6.8.apache版本2.4.12 1.在安装memcached之前需要安装libevent支持: # wget http://syslab.comsenz.com/downloads/linux/libevent-1.4.12-stable.tar

  • php安装swoole扩展的方法

    本文实例讲述了php安装swoole扩展的方法.分享给大家供大家参考.具体如下: 我本机是OS X,想要安装swoole体验一下,于是: 复制代码 代码如下: andy@AndyMacBookPro:/usr/local/webdata/github$ cd swoole-src/ andy@AndyMacBookPro:/usr/local/webdata/github/swoole-src$ git pull Already up-to-date. andy@AndyMacBookPro:/

  • php类的扩展和继承用法实例

    本文实例讲述了php类的扩展和继承用法.分享给大家供大家参考.具体如下: <?php class Thread { var $topic; //帖子主题 var $body; //帖子内容 var $date; //帖子发布时间 var $author; //帖子作者 //函数Thread用于初始化变量等 function Thread() { //初始化变量 } //函数Send用于提交新帖子 function Send() { //检测变量的合法性后执行插入操作将变量存储到数据库中 } //

  • 腾讯CMEM的PHP扩展编译安装方法

    本文实例讲述了腾讯CMEM的PHP扩展编译安装方法.分享给大家供大家参考.具体如下: CMEM是什么? CMEM全称为Cloud Memory,是腾讯提供的高性能内存级持久化存储服务,适用于数据量小.访问量高.key-value存储的场景. CMEM基于一个存储键/值对的hashmap,数据使用内存存储,并保证数据的持久性. CMEM PHP Extension是什么? CMEM基于标准的Memcached协议以及接口,只是将数据获取接口增加返回值设定. Memcached的Get协议没有设计返

  • 试用php中oci8扩展

    给大家分享个php操作Oracle的操作类 Oracle_db.class.php <?php class Oracle_db{ public $link; public function __construct(){ $this->link=$this->connect(); if(!$this->link){ echo "连接失败"; exit; } } public function connect(){ return oci_connect('demo'

  • PHP封装CURL扩展类实例

    本文实例讲述了PHP封装CURL扩展类.分享给大家供大家参考.具体如下: <?php /** * @description: 封装CURL扩展 * @date: 2014-07-28 16:04 */ /** * @编码规范 * @class 类名首字母大写,类名为多个单词, 每个大字首字母大写 eg: class Curl , class CurlPage * @variable 变量名小写, 变量名为多个单词, 每个单词小写,使用下划线_分割 eg: $curl_result * @func

随机推荐