Java二分查找算法实现代码实例

这篇文章主要介绍了Java二分查找算法实现代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

二分查找:

两种方式: 非递归方式和递归方式

主要思路: 对于已排序的数组(先假定是从小到大排序), 先定义两个"指针", 一个"指向"首元素low, 一个"指向"末尾元素high. 然后, 开始折半比较, 即让要查找的数与数组中间的元素(索引为 low+high/2)比较. 若要查找的数比中间数小, 说明要查找的数在数组左侧(注意前提是数组从小到大排序), 否则说明该数在数组的右侧. 如果low最后还比high大,俩"指针"交叉了, 说明没有找到该数, 即数组不存在该数.

注意事项: 排序规则与数组的排序顺序有关, 即从大到小排序和从小到大排序是不一样的!!!

代码如下

class BinarySearch {

  // 二分查找非递归方式
  // arr 给定已排序数组
  // num 要查找的数
  public static int search(int[] arr, int num) {
    int low = 0;
    int high = arr.length - 1;
    int mid = 0;
    while (low <= high) {
      mid = (low + high) / 2;
      if (num < arr[mid]) {
        high = mid - 1;
      }

      if (num > arr[mid]) {
        low = mid + 1;
      }
      if (num == arr[mid]) {
        return mid;
      }
    }
    return -1;  // 没找到
  }

  // 二分查找递归方式
  // arr 给定已排序数组
  // num 要查找的数
  // low 初始左侧指针 指向第一个元素
  // high 初始末尾指针 指向最后一个元素
  public static int binarySearch(int[] arr, int num, int low, int high) {

    int mid = (low + high) / 2; 

    // 递归结束条件
    if (low > high) {
      return -1;
    }

    if (num < arr[mid]) {
      return binarySearch(arr, num, low, mid - 1);
    } else if (num == arr[mid]) {
      return mid;
    } else {
      return binarySearch(arr, num, mid + 1, high);
    }

  }

  public static void main(String[] args) {

    // 给定数组 从小到大排序.
    int[] arr = {2, 3, 5, 7, 8, 9, 11, 12, 15};
    // int[] arr = {15, 12, 11, 9, 8, 7, 5, 3, 2};

    int m = 3;

    // int index = search(arr, m);

    int index = binarySearch(arr, m, 0, arr.length - 1);

    System.out.println(index);

  }

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • java 算法二分查找和折半查找

     java 算法二分查找与折半查找 折半查找 :首先数组是已经排好序的 实例代码: package com.hao.myrxjava; /** * 折半查找 :首先数组是已经排好序的 * * @author zhanghaohao * @date 2017/5/15 */ public class HalfDivision { /** * 循环实现 * * @param array 排好序的数组 * @param value 查找的值 * @return value在array的位置 */ pu

  • Java使用二分法进行查找和排序的示例

    实现二分法查找 二分法查找,需要数组内是一个有序的序列 二分查找比线性查找:数组的元素数越多,效率提高的越明显 二分查找的效率表示:O(log2N) N在2的M次幂范围,那查找的次数最大就是M,  log2N表示2的M次幂等于N, 省略常数,简写成O(logN) 如有一个200个元素的有序数组,那么二分查找的最大次数: 2^7=128, 2^8=256, 可以看出7次幂达不到200,8次幂包括, 所以最大查找次数就等于8 //循环,二分查找 static int binarySearch(int

  • java算法之二分查找法的实例详解

    java算法之二分查找法的实例详解 原理 假定查找范围为一个有序数组(如升序排列),要从中查找某一元素,如果该元素在此数组中,则返回其索引,否则返回-1.通过数组长度可取出中间位置元素的索引,将其值与目标值比较,如果中间位置元素值大于目标值,则在左部分进行查找,如果中间位置值小于目标值,则在右部分进行查找,如此循环,直到结束.二分查找算法之所以快是因为它没有遍历数组的每个元素,而仅仅是查找部分元素就能找到目标或确定其不存在,当然前提是查找范围为有序数组. Java的简单实现 package me

  • Java实现的两种常见简单查找算法示例【快速查找与二分查找】

    本文实例讲述了Java实现的两种常见简单查找算法.分享给大家供大家参考,具体如下: 前言: 查找是指从一批记录当中找出满足制定条件的某一记录的过程. 在平常的程序的编写当中很多时候时用得上的,这里简单介绍两个查找算法 1. 快速查找: 这个是相当简单的,以数组举例,就用一个for循环去查找数组中需要查找的数据 例子: public static boolean quickSearch(int a[], int x) { boolean f = false; int length = a.leng

  • 详解Java数据结构和算法(有序数组和二分查找)

    一.概述 有序数组中常常用到二分查找,能提高查找的速度.今天,我们用顺序查找和二分查找实现数组的增删改查. 二.有序数组的优缺点 优点:查找速度比无序数组快多了 缺点:插入时要按排序方式把后面的数据进行移动 三.有序数组和无序数组共同优缺点 删除数据时必须把后面的数据向前移动来填补删除项的漏洞 四.代码实现 public class OrderArray { private int nElemes; //记录数组长度 private long[] a; /** * 构造函数里面初始化数组 赋值默

  • java数据结构之二分查找法 binarySearch的实例

    java数据结构之二分查找法 binarySearch的实例 折半查找法,前提是已经排好序的数组才可查找 实例代码: public class BinarySearch { int[] bArr; public void setArr(int[] bArr){ this.bArr=bArr; } public static void main(String[] args) { int arrLength=16; int[] bArr=new int[arrLength]; System.out.

  • java 折半查找法(二分查找)实例

    复制代码 代码如下: public class HalfSearch { public static int halfSearch(int a[], int x) {  int mid, left, right;  left = 0;  right = a.length - 1;   mid = (left + right) / 2;  while (a[mid] != x) {   if (x > a[mid]) {    left = mid + 1;   }   else if (x <

  • java二分查找插入法

    复制代码 代码如下: package uv; public class Bean  implements Comparable<Bean>  {String sessionId;Integer num = 1;public String getSessionId() {return sessionId;}public void setSessionId(String sessionId) {this.sessionId = sessionId;}public Integer getNum()

  • Java二分查找算法实现代码实例

    这篇文章主要介绍了Java二分查找算法实现代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 二分查找: 两种方式: 非递归方式和递归方式 主要思路: 对于已排序的数组(先假定是从小到大排序), 先定义两个"指针", 一个"指向"首元素low, 一个"指向"末尾元素high. 然后, 开始折半比较, 即让要查找的数与数组中间的元素(索引为 low+high/2)比较. 若要查找的数比中间数小

  • Java二分查找算法与数组处理的应用实例

    目录 1.特殊数组的特征值 题目描述 思路详解 代码与结果 2.在D天内送达包裹的能力 题目描述 思路详解 代码与结果 3.咒语和药水的成功对数 题目描述 思路详解 代码与结果 总结 1.特殊数组的特征值 题目描述 思路详解 看到本题,首先思考需要排序,然后查找,这里为了效率采用二分查找. 假设定义x=(left+riht)/ 2,每次查找到nums中第一个大于等于X的元素下标,判断大于等于X的个数与X的关系,进行分情况修改左右边界. 代码与结果 class Solution { public

  • Java 二分查找算法的实现

    二分查找又称折半查找,它是一种效率较高的查找方法. 折半查找的算法思想是将数列按有序化(递增或递减)排列,查找过程中采用跳跃式方式查找,即先以有序数列的中点位置为比较对象,如果要找的元素值小 于该中点元素,则将待查序列缩小为左半部分,否则为右半部分.通过一次比较,将查找区间缩小一半. 折半查找是一种高效的查找方法.它可以明显减少比较次数,提高查找效率.但是,折半查找的先决条件是查找表中的数据元素必须有序. 折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删

  • Java实现二分查找算法实例分析

    本文实例讲述了Java实现二分查找算法.分享给大家供大家参考.具体如下: 1. 前提:二分查找的前提是需要查找的数组必须是已排序的,我们这里的实现默认为升序 2. 原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后:将要查找的值和数组的中值进行比较,若小于中值则在中值前面找,若大于中值则在中值后面找,等于中值时直接返回.然后依次是一个递归过程,将前半部分或者后半部分继续分解为三部分.可能描述得不是很清楚,若是不理解可以去网上找.从描述上就可以看出这个算法适合

  • Java实现查找算法的示例代码(二分查找、插值查找、斐波那契查找)

    目录 1.查找概述 2.顺序查找 3.二分查找 3.1 二分查找概述 3.2 二分查找实现 4.插值查找 4.1 插值查找概述 4.2 插值查找实现 5.斐波那契查找 5.1 斐波那契查找概述 5.2 斐波那契查找实现 5.3 总结 1.查找概述 查找表: 所有需要被查的数据所在的集合,我们给它一个统称叫查找表.查找表(Search Table)是由同一类型的数据元素(或记录)构成的集合. 查找(Searching): 根据给定的某个值,在查找表中确定一个其关键字等于给定值的数据元素(或记录).

  • C++二分查找算法实例

    本文实例为大家分享C++二分查找算法,通过改变边界位置来进行查找的方法,代码如下: #include <iostream> using namespace std; int search(int *p,int length,int key); int search1(int *p,int length,int key); int main() { cout << "Hello world!" << endl; int a[] = {1,2,3,4,5

  • PHP实现的二分查找算法实例分析

    本文实例讲述了PHP实现的二分查找算法.分享给大家供大家参考,具体如下: 二分查找法需要数组是一个有序的数组 假设我们的数组是一个递增的数组,首先我们需要找到数组的中间位置. 一.要知道中间位置就需要知道起始位置和结束位置,然后取出中间位置的值来和我们的值做对比. 二.如果中间值大于我们的给定值,说明我们的值在中间位置之前,此时需要再次二分,因为在中间之前,所以我们需要变的值是结束位置的值,此时结束位置的值应该是我们此时的中间位置. 三.反之,如果中间值小于我们给定的值,那么说明给定值在中间位置

  • 使用PHP实现二分查找算法代码分享

    第一种方法: [二分查找要求]:1.必须采用顺序存储结构 2.必须按关键字大小有序排列. [优缺点]折半查找法的优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表. [算法思想]首先,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表. 复制代码 代码如下: <?

  • js实现的二分查找算法实例

    本文实例讲述了js实现的二分查找算法.分享给大家供大家参考,具体如下: <!DOCTYPE html> <html> <head> <title>demo</title> <style type="text/css"> </style> <script type="text/javascript"> var binarySearch = function(array, s

随机推荐