python中kmeans聚类实现代码

k-means算法思想较简单,说的通俗易懂点就是物以类聚,花了一点时间在python中实现k-means算法,k-means算法有本身的缺点,比如说k初始位置的选择,针对这个有不少人提出k-means++算法进行改进;另外一种是要对k大小的选择也没有很完善的理论,针对这个比较经典的理论是轮廓系数,二分聚类的算法确定k的大小,在最后还写了二分聚类算法的实现,代码主要参考机器学习实战那本书:

#encoding:utf-8
'''''
Created on 2015年9月21日
@author: ZHOUMEIXU204
''' 

path=u"D:\\Users\\zhoumeixu204\\Desktop\\python语言机器学习\\机器学习实战代码  python\\机器学习实战代码\\machinelearninginaction\\Ch10\\"
import numpy as np
def loadDataSet(fileName): #读取数据
  dataMat=[]
  fr=open(fileName)
  for line in fr.readlines():
    curLine=line.strip().split('\t')
    fltLine=map(float,curLine)
    dataMat.append(fltLine)
  return dataMat
def distEclud(vecA,vecB):  #计算距离
  return np.sqrt(np.sum(np.power(vecA-vecB,2)))
def randCent(dataSet,k):   #构建镞质心
  n=np.shape(dataSet)[1]
  centroids=np.mat(np.zeros((k,n)))
  for j in range(n):
    minJ=np.min(dataSet[:,j])
    rangeJ=float(np.max(dataSet[:,j])-minJ)
    centroids[:,j]=minJ+rangeJ*np.random.rand(k,1)
  return centroids
dataMat=np.mat(loadDataSet(path+'testSet.txt'))
print(dataMat[:,0]) 

# 所有数都比-inf大
# 所有数都比+inf小
def kMeans(dataSet,k,distMeas=distEclud,createCent=randCent):
  m=np.shape(dataSet)[0]
  clusterAssment=np.mat(np.zeros((m,2)))
  centroids=createCent(dataSet,k)
  clusterChanged=True
  while clusterChanged:
    clusterChanged=False
    for i in range(m):
      minDist=np.inf;minIndex=-1 #np.inf表示无穷大
      for j in range(k):
        distJI=distMeas(centroids[j,:],dataSet[i,:])
        if distJI
          minDist=distJI;minIndex=j
      if clusterAssment[i,0]!=minIndex:clusterChanged=True
      clusterAssment[i,:]=minIndex,minDist**2
    print centroids
    for cent in range(k):
      ptsInClust=dataSet[np.nonzero(clusterAssment[:,0].A==cent)[0]] #[0]这里取0是指去除坐标索引值,结果会有两个
      #np.nonzero函数,寻找非0元素的下标 nz=np.nonzero([1,2,3,0,0,4,0])结果为0,1,2
      centroids[cent,:]=np.mean(ptsInClust,axis=0) 

  return centroids,clusterAssment
myCentroids,clustAssing=kMeans(dataMat,4)
print(myCentroids,clustAssing)  

#二分均值聚类(bisecting k-means)
def  biKmeans(dataSet,k,distMeas=distEclud):
  m=np.shape(dataSet)[0]
  clusterAssment=np.mat(np.zeros((m,2)))
  centroid0=np.mean(dataSet,axis=0).tolist()[0]
  centList=[centroid0]
  for j in range(m):
    clusterAssment[j,1]=distMeas(np.mat(centroid0),dataSet[j,:])**2
  while (len(centList)
    lowestSSE=np.Inf
    for i in range(len(centList)):
      ptsInCurrCluster=dataSet[np.nonzero(clusterAssment[:,0].A==i)[0],:]
      centroidMat,splitClusAss=kMeans(ptsInCurrCluster,2,distMeas)
      sseSplit=np.sum(splitClusAss[:,1])
      sseNotSplit=np.sum(clusterAssment[np.nonzero(clusterAssment[:,0].A!=i)[0],1])
      print "sseSplit, and notSplit:",sseSplit,sseNotSplit
      if (sseSplit+sseNotSplit)
        bestCenToSplit=i
        bestNewCents=centroidMat
        bestClustAss=splitClusAss.copy()
        lowestSSE=sseSplit+sseNotSplit
    bestClustAss[np.nonzero(bestClustAss[:,0].A==1)[0],0]=len(centList)
    bestClustAss[np.nonzero(bestClustAss[:,0].A==0)[0],0]=bestCenToSplit
    print "the bestCentToSplit is:",bestCenToSplit
    print 'the len of bestClustAss is:',len(bestClustAss)
    centList[bestCenToSplit]=bestNewCents[0,:]
    centList.append(bestNewCents[1,:])
    clusterAssment[np.nonzero(clusterAssment[:,0].A==bestCenToSplit)[0],:]=bestClustAss
  return centList,clusterAssment
print(u"二分聚类分析结果开始")
dataMat3=np.mat(loadDataSet(path+'testSet2.txt'))
centList,myNewAssments=biKmeans(dataMat3, 3)
print(centList)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

您可能感兴趣的文章:

  • python kmeans聚类简单介绍和实现代码
  • Python实现k-means算法
  • Python机器学习算法之k均值聚类(k-means)
  • python实现k-means聚类算法
  • Python机器学习之K-Means聚类实现详解
  • Python实现Kmeans聚类算法
  • python实现kMeans算法
  • 详解K-means算法在Python中的实现
  • python中学习K-Means和图片压缩
  • Python KMeans聚类问题分析
(0)

相关推荐

  • Python机器学习算法之k均值聚类(k-means)

    一开始的目的是学习十大挖掘算法(机器学习算法),并用编码实现一遍,但越往后学习,越往后实现编码,越发现自己的编码水平低下,学习能力低.这一个k-means算法用Python实现竟用了三天时间,可见编码水平之低,而且在编码的过程中看了别人的编码,才发现自己对numpy认识和运用的不足,在自己的代码中有很多可以优化的地方,比如求均值的地方可以用mean直接对数组求均值,再比如去最小值的下标,我用的是argsort排序再取列表第一个,但是有argmin可以直接用啊.下面的代码中这些可以优化的并没有改,

  • 详解K-means算法在Python中的实现

    K-means算法简介 K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高,不同簇中数据相似度较低. K-MEANS算法是输入聚类个数k,以及包含 n个数据对象的数据库,输出满足方差最小标准k个聚类的一种算法.k-means 算法接受输入量 k :然后将n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高:而不同聚类中的对象相似度较小. 核心思想 通过迭代寻找

  • Python KMeans聚类问题分析

    今天用python实现了一下简单的聚类分析,顺便熟悉了numpy数组操作和绘图的一些技巧,在这里做个记录. from pylab import * from sklearn.cluster import KMeans ## 利用numpy.append()函数实现matlab多维数组合并的效果,axis 参数值为 0 时是 y 轴方向合并,参数值为 1 时是 x 轴方向合并,分别对应matlab [A ; B] 和 [A , B]的效果 #创建5个随机的数据集 x1=append(randn(5

  • Python机器学习之K-Means聚类实现详解

    本文为大家分享了Python机器学习之K-Means聚类的实现代码,供大家参考,具体内容如下 1.K-Means聚类原理 K-means算法是很典型的基于距离的聚类算法,采用距离作为相似性的评价指标,即认为两个对象的距离越近,其相似度就越大.其基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类.通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果.各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开. 算法大致流程为:(1)随机选取k个点作为种子点(这k个点不一定属于数据集)

  • python中学习K-Means和图片压缩

    大家在学习python中,经常会使用到K-Means和图片压缩的,我们在此给大家分享一下K-Means和图片压缩的方法和原理,喜欢的朋友收藏一下吧. 通俗的介绍这种压缩方式,就是将原来很多的颜色用少量的颜色去表示,这样就可以减小图片大小了.下面首先我先介绍下K-Means,当你了解了K-Means那么你也很容易的可以去理解图片压缩了,最后附上图片压缩的核心代码. K-Means的核心思想 k-means的核心算法也就上面寥寥几句,下面将分三个部分来讲解:初始化簇中心.簇分配.簇中心移动. 初始化

  • python kmeans聚类简单介绍和实现代码

    一.k均值聚类的简单介绍 假设样本分为c类,每个类均存在一个中心点,通过随机生成c个中心点进行迭代,计算每个样本点到类中心的距离(可以自定义.常用的是欧式距离) 将该样本点归入到最短距离所在的类,重新计算聚类中心,进行下次的重新划分样本,最终类中心不改变时,聚类完成 二.伪代码   三.python代码实现   #!/usr/bin/env python # coding=utf-8 import numpy as np import random import matplotlib.pyplo

  • Python实现k-means算法

    本文实例为大家分享了Python实现k-means算法的具体代码,供大家参考,具体内容如下 这也是周志华<机器学习>的习题9.4. 数据集是西瓜数据集4.0,如下 编号,密度,含糖率 1,0.697,0.46 2,0.774,0.376 3,0.634,0.264 4,0.608,0.318 5,0.556,0.215 6,0.403,0.237 7,0.481,0.149 8,0.437,0.211 9,0.666,0.091 10,0.243,0.267 11,0.245,0.057 12

  • Python实现Kmeans聚类算法

    本节内容:本节内容是根据上学期所上的模式识别课程的作业整理而来,第一道题目是Kmeans聚类算法,数据集是Iris(鸢尾花的数据集),分类数k是3,数据维数是4. 关于聚类 聚类算法是这样的一种算法:给定样本数据Sample,要求将样本Sample中相似的数据聚到一类.有了这个认识之后,就应该了解了聚类算法要干什么了吧.说白了,就是归类.     首先,我们需要考虑的是,如何衡量数据之间的相似程度?比如说,有一群说不同语言的人,我们一般是根据他们的方言来聚类的(当然,你也可以指定以身高来聚类).

  • python实现k-means聚类算法

    k-means聚类算法 k-means是发现给定数据集的k个簇的算法,也就是将数据集聚合为k类的算法. 算法过程如下: 1)从N个文档随机选取K个文档作为质心 2)对剩余的每个文档测量其到每个质心的距离,并把它归到最近的质心的类,我们一般取欧几里得距离 3)重新计算已经得到的各个类的质心 4)迭代步骤(2).(3)直至新的质心与原质心相等或迭代次数大于指定阈值,算法结束 算法实现 随机初始化k个质心,用dict保存质心的值以及被聚类到该簇中的所有data. def initCent(dataSe

  • python实现kMeans算法

    聚类是一种无监督的学习,将相似的对象放到同一簇中,有点像是全自动分类,簇内的对象越相似,簇间的对象差别越大,则聚类效果越好. 1.k均值聚类算法 k均值聚类将数据分为k个簇,每个簇通过其质心,即簇中所有点的中心来描述.首先随机确定k个初始点作为质心,然后将数据集分配到距离最近的簇中.然后将每个簇的质心更新为所有数据集的平均值.然后再进行第二次划分数据集,直到聚类结果不再变化为止. 伪代码为 随机创建k个簇质心 当任意一个点的簇分配发生改变时:     对数据集中的每个数据点:         对

随机推荐