Python机器学习之SVM支持向量机

SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集。
SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的:
支持向量机通俗导论(理解SVM的3层境界)
JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了。。强烈推荐。
还有一个比较通俗的简单版本的:手把手教你实现SVM算法

SVN原理比较复杂,但是思想很简单,一句话概括,就是通过某种核函数,将数据在高维空间里寻找一个最优超平面,能够将两类数据分开。

针对不同数据集,不同的核函数的分类效果可能完全不一样。可选的核函数有这么几种:
线性函数:形如K(x,y)=x*y这样的线性函数;
多项式函数:形如K(x,y)=[(x·y)+1]^d这样的多项式函数;
径向基函数:形如K(x,y)=exp(-|x-y|^2/d^2)这样的指数函数;
Sigmoid函数:就是上一篇文章中讲到的Sigmoid函数。

我们就利用之前的几个数据集,直接给出Python代码,看看运行效果:

测试1:身高体重数据

# -*- coding: utf-8 -*-
import numpy as np
import scipy as sp
from sklearn import svm
from sklearn.cross_validation import train_test_split
import matplotlib.pyplot as plt 

data  = []
labels = []
with open("data\\1.txt") as ifile:
    for line in ifile:
      tokens = line.strip().split(' ')
      data.append([float(tk) for tk in tokens[:-1]])
      labels.append(tokens[-1])
x = np.array(data)
labels = np.array(labels)
y = np.zeros(labels.shape)
y[labels=='fat']=1
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.0) 

h = .02
# create a mesh to plot in
x_min, x_max = x_train[:, 0].min() - 0.1, x_train[:, 0].max() + 0.1
y_min, y_max = x_train[:, 1].min() - 1, x_train[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
           np.arange(y_min, y_max, h)) 

''''' SVM '''
# title for the plots
titles = ['LinearSVC (linear kernel)',
     'SVC with polynomial (degree 3) kernel',
     'SVC with RBF kernel',
     'SVC with Sigmoid kernel']
clf_linear = svm.SVC(kernel='linear').fit(x, y)
#clf_linear = svm.LinearSVC().fit(x, y)
clf_poly  = svm.SVC(kernel='poly', degree=3).fit(x, y)
clf_rbf   = svm.SVC().fit(x, y)
clf_sigmoid = svm.SVC(kernel='sigmoid').fit(x, y) 

for i, clf in enumerate((clf_linear, clf_poly, clf_rbf, clf_sigmoid)):
  answer = clf.predict(np.c_[xx.ravel(), yy.ravel()])
  print(clf)
  print(np.mean( answer == y_train))
  print(answer)
  print(y_train) 

  plt.subplot(2, 2, i + 1)
  plt.subplots_adjust(wspace=0.4, hspace=0.4) 

  # Put the result into a color plot
  z = answer.reshape(xx.shape)
  plt.contourf(xx, yy, z, cmap=plt.cm.Paired, alpha=0.8) 

  # Plot also the training points
  plt.scatter(x_train[:, 0], x_train[:, 1], c=y_train, cmap=plt.cm.Paired)
  plt.xlabel(u'身高')
  plt.ylabel(u'体重')
  plt.xlim(xx.min(), xx.max())
  plt.ylim(yy.min(), yy.max())
  plt.xticks(())
  plt.yticks(())
  plt.title(titles[i]) 

plt.show()

运行结果如下:

可以看到,针对这个数据集,使用3次多项式核函数的SVM,得到的效果最好。

测试2:影评态度

下面看看SVM在康奈尔影评数据集上的表现:(代码略)

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='linear', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
0.814285714286

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='poly', max_iter=-1, probability=False, random_state=None,  shrinking=True, tol=0.001, verbose=False)
0.492857142857

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='rbf', max_iter=-1, probability=False, random_state=None,  shrinking=True, tol=0.001, verbose=False)
0.492857142857

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='sigmoid', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
0.492857142857

可见在该数据集上,线性分类器效果最好。

测试3:圆形边界

最后我们测试一个数据分类边界为圆形的情况:圆形内为一类,原型外为一类。看这类非线性的数据SVM表现如何:
测试数据生成代码如下所示:

''''' 数据生成 '''
h = 0.1
x_min, x_max = -1, 1
y_min, y_max = -1, 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
           np.arange(y_min, y_max, h))
n = xx.shape[0]*xx.shape[1]
x = np.array([xx.T.reshape(n).T, xx.reshape(n)]).T
y = (x[:,0]*x[:,0] + x[:,1]*x[:,1] < 0.8)
y.reshape(xx.shape) 

x_train, x_test, y_train, y_test\
  = train_test_split(x, y, test_size = 0.2)

测试结果如下:

SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='linear', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
0.65
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='poly', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
0.675
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='rbf', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
0.9625
SVC(C=1.0, cache_size=200, class_weight=None, coef0=0.0, degree=3, gamma=0.0,  kernel='sigmoid', max_iter=-1, probability=False, random_state=None,
  shrinking=True, tol=0.001, verbose=False)
0.65

可以看到,对于这种边界,径向基函数的SVM得到了近似完美的分类结果。而其他的分类器显然束手无策。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • SVM基本概念及Python实现代码

    SVM(support vector machine)支持向量机: 注意:本文不准备提到数学证明的过程,一是因为有一篇非常好的文章解释的非常好:支持向量机通俗导论(理解SVM的三层境界),另一方面是因为我只是个程序员,不是搞数学的(主要是因为数学不好.),主要目的是将SVM以最通俗易懂,简单粗暴的方式解释清楚. 线性分类: 先从线性可分的数据讲起,如果需要分类的数据都是线性可分的,那么只需要一根直线f(x)=wx+b就可以分开了,类似这样: 这种方法被称为:线性分类器,一个线性分类器的学习目标便

  • Python中使用支持向量机(SVM)算法

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解.   (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等.   (3)S

  • 手把手教你python实现SVM算法

    什么是机器学习 (Machine Learning) 机器学习是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能.它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域. 机器学习的大致分类: 1)分类(模式识别):要求系统依据已知的分类知识对输入的未知模式(该模式的描述)作分析,以确定输入模式的类属,例如手写识别(识别是不是这个数). 2)问题求解:要求对于给定的目标状态,寻找一个将当前状态转换为目标状态的动作序

  • Python中使用支持向量机SVM实践

    在机器学习领域,支持向量机SVM(Support Vector Machine)是一个有监督的学习模型,通常用来进行模式识别.分类(异常值检测)以及回归分析. 其具有以下特征: (1)SVM可以表示为凸优化问题,因此可以利用已知的有效算法发现目标函数的全局最小值.而其他分类方法都采用一种基于贪心学习的策略来搜索假设空间,这种方法一般只能获得局部最优解. (2) SVM通过最大化决策边界的边缘来实现控制模型的能力.尽管如此,用户必须提供其他参数,如使用核函数类型和引入松弛变量等. (3)SVM一般

  • Python中支持向量机SVM的使用方法详解

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明 skleran中集成了许多算法,其导入包的方式如下所示, 逻辑回归:from sklearn.linear_model import LogisticRegression 朴素贝叶斯:fro

  • Python机器学习之SVM支持向量机

    SVM支持向量机是建立于统计学习理论上的一种分类算法,适合与处理具备高维特征的数据集. SVM算法的数学原理相对比较复杂,好在由于SVM算法的研究与应用如此火爆,CSDN博客里也有大量的好文章对此进行分析,下面给出几个本人认为讲解的相当不错的: 支持向量机通俗导论(理解SVM的3层境界) JULY大牛讲的是如此详细,由浅入深层层推进,以至于关于SVM的原理,我一个字都不想写了..强烈推荐. 还有一个比较通俗的简单版本的:手把手教你实现SVM算法 SVN原理比较复杂,但是思想很简单,一句话概括,就

  • Python机器学习应用之支持向量机的分类预测篇

    目录 1.Question? 2.Answer!——SVM 3.软间隔 4.超平面 支持向量机常用于数据分类,也可以用于数据的回归预测 1.Question? 我们经常会遇到这样的问题,给你一些属于两个类别的数据(如子图1),需要一个线性分类器将这些数据分开,有很多分法(如子图2),现在有一个问题,两个分类器,哪一个更好?为了判断好坏,我们需要引入一个准则:好的分类器不仅仅能够很好的分开已有的数据集,还能对为知的数据进行两个划分,假设现在有一个属于红色数据点的新数据(如子图3中的绿三角),可以看

  • 吴恩达机器学习练习:SVM支持向量机

    1 Support Vector Machines 1.1 Example Dataset 1 %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sb from scipy.io import loadmat from sklearn import svm 大多数SVM的库会自动帮你添加额外的特征X₀已经θ₀,所以无需手动添加 ma

  • Python机器学习logistic回归代码解析

    本文主要研究的是Python机器学习logistic回归的相关内容,同时介绍了一些机器学习中的概念,具体如下. Logistic回归的主要目的:寻找一个非线性函数sigmod最佳的拟合参数 拟合.插值和逼近是数值分析的三大工具 回归:对一直公式的位置参数进行估计 拟合:把平面上的一些系列点,用一条光滑曲线连接起来 logistic主要思想:根据现有数据对分类边界线建立回归公式.以此进行分类 sigmoid函数:在神经网络中它是所谓的激励函数.当输入大于0时,输出趋向于1,输入小于0时,输出趋向0

  • python机器学习案例教程——K最近邻算法的实现

    K最近邻属于一种分类算法,他的解释最容易,近朱者赤,近墨者黑,我们想看一个人是什么样的,看他的朋友是什么样的就可以了.当然其他还牵着到,看哪方面和朋友比较接近(对象特征),怎样才算是跟朋友亲近,一起吃饭还是一起逛街算是亲近(距离函数),根据朋友的优秀不优秀如何评判目标任务优秀不优秀(分类算法),是否不同优秀程度的朋友和不同的接近程度要考虑一下(距离权重),看几个朋友合适(k值),能否以分数的形式表示优秀度(概率分布). K最近邻概念: 它的工作原理是:存在一个样本数据集合,也称作为训练样本集,并

  • Python SVM(支持向量机)实现方法完整示例

    本文实例讲述了Python SVM(支持向量机)实现方法.分享给大家供大家参考,具体如下: 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end: 结束 op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 是否达到迭代次数 op3=>operation: 寻找超平面分割最小间隔 ccond=>cond

  • Python机器学习工具scikit-learn的使用笔记

    scikit-learn 是基于 Python 语言的机器学习工具 简单高效的数据挖掘和数据分析工具 可供大家在各种环境中重复使用 建立在 NumPy ,SciPy 和 matplotlib 上 开源,可商业使用 - BSD许可证 sklearn 中文文档:http://www.scikitlearn.com.cn/ 官方文档:http://scikit-learn.org/stable/ sklearn官方文档的类容和结构如下: sklearn是基于numpy和scipy的一个机器学习算法库,

  • Python 机器学习工具包SKlearn的安装与使用

    1.SKlearn 是什么 Sklearn(全称 SciKit-Learn),是基于 Python 语言的机器学习工具包. Sklearn 主要用Python编写,建立在 Numpy.Scipy.Pandas 和 Matplotlib 的基础上,也用 Cython编写了一些核心算法来提高性能. Sklearn 包括六大功能模块: 分类(Classification):识别样本属于哪个类别,常用算法有 SVM(支持向量机).nearest neighbors(最近邻).random forest(

  • Python机器学习入门(五)算法审查

    目录 1.审查分类算法 1.1线性算法审查 1.1.1逻辑回归 1.1.2线性判别分析 1.2非线性算法审查 1.2.1K近邻算法 1.2.2贝叶斯分类器 1.2.4支持向量机 2.审查回归算法 2.1线性算法审查 2.1.1线性回归算法 2.1.2岭回归算法 2.1.3套索回归算法 2.1.4弹性网络回归算法 2.2非线性算法审查 2.2.1K近邻算法 2.2.2分类与回归树 2.2.3支持向量机 3.算法比较 总结 程序测试是展现BUG存在的有效方式,但令人绝望的是它不足以展现其缺位. --

  • Python机器学习入门(五)之Python算法审查

    目录 1.审查分类算法 1.1线性算法审查 1.1.1逻辑回归 1.1.2线性判别分析 1.2非线性算法审查 1.2.1K近邻算法 1.2.2贝叶斯分类器 1.2.3分类与回归树 1.2.4支持向量机 2.审查回归算法 2.1线性算法审查 2.1.1线性回归算法 2.1.2岭回归算法 2.1.3套索回归算法 2.1.4弹性网络回归算法 2.2非线性算法审查 2.2.1K近邻算法 2.2.2分类与回归树 2.2.3支持向量机 3.算法比较 总结 程序测试是展现BUG存在的有效方式,但令人绝望的是它

随机推荐