python中mpi4py的所有基础使用案例详解

python中mpi4py的基础使用

大多数 MPI 程序都可以使用命令 mpiexec 运行。在实践中,运行 Python 程序如下所示:

$ mpiexec -n 4 python script.py

案例1:测试comm.send 和comm.recv函数,代码如下

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {'a': 7, 'b': 3.14}
    comm.send(data, dest=1, tag=11)
elif rank == 1:
    data = comm.recv(source=0, tag=11)

rank代表进程编号,其总数是mpiexec -n中的n的个数,最大的n受到电脑cpu内核数的限制
dest代表发送的目标,tag是一个标志位可以忽略,source为数据来源rank标志

案例2:具有非阻塞通讯的python对象

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {'a': 7, 'b': 3.14}
    req = comm.isend(data, dest=1, tag=11)
    req.wait()
elif rank == 1:
    req = comm.irecv(source=0, tag=11)
    data = req.wait()

案例3: 快速发送实例

这里的Send和Recv都是大写,用于numpy数据的传输

from mpi4py import MPI
import numpy

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

# passing MPI datatypes explicitly
if rank == 0:
    data = numpy.arange(1000, dtype='i')
    comm.Send([data, MPI.INT], dest=1, tag=77)
elif rank == 1:
    data = numpy.empty(1000, dtype='i')
    comm.Recv([data, MPI.INT], source=0, tag=77)

# automatic MPI datatype discovery
if rank == 0:
    data = numpy.arange(100, dtype=numpy.float64)
    comm.Send(data, dest=1, tag=13)
elif rank == 1:
    data = numpy.empty(100, dtype=numpy.float64)
    comm.Recv(data, source=0, tag=13)

案例4:集体通讯,广播机制

广播机制就是将当前root=0端口下的所有信息发送到任何一个进程

from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = {'key1' : [7, 2.72, 2+3j],
            'key2' : ( 'abc', 'xyz')}
else:
    data = None
data = comm.bcast(data, root=0)

案例5:scatter,将root=0下的数据一次分发到各个rank下

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

if rank == 0:
    data = [(i+1)**2 for i in range(size)]
else:
    data = None
data = comm.scatter(data, root=0)
assert data == (rank+1)**2

案例6:gather,将所有rank下的数据收集到root下

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

data = (rank+1)**2
data = comm.gather(data, root=0)
if rank == 0:
    for i in range(size):
        assert data[i] == (i+1)**2
else:
    assert data is None

案例7,numpy的广播机制

与之前一样都是大写

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
rank = comm.Get_rank()

if rank == 0:
    data = np.arange(100, dtype='i')
else:
    data = np.empty(100, dtype='i')
comm.Bcast(data, root=0)
for i in range(100):
    assert data[i] == i

案例8:numpy的Scatter机制

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = None
if rank == 0:
    sendbuf = np.empty([size, 100], dtype='i')
    sendbuf.T[:,:] = range(size)
recvbuf = np.empty(100, dtype='i')
comm.Scatter(sendbuf, recvbuf, root=0)
assert np.allclose(recvbuf, rank)

案例9:numpy的Gather机制

from mpi4py import MPI
import numpy as np

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

sendbuf = np.zeros(100, dtype='i') + rank
recvbuf = None
if rank == 0:
    recvbuf = np.empty([size, 100], dtype='i')
comm.Gather(sendbuf, recvbuf, root=0)
if rank == 0:
    for i in range(size):
        assert np.allclose(recvbuf[i,:], i)

案例10 :allgather机制

allgather就是 scatter 加上广播机制。
rank0 = a
rank1 = b
rank2 = c
allgather后结果为
rank0 = a,b,c
rank1 = a,b,c
rank2 = a,b,c

from mpi4py import MPI
import numpy

def matvec(comm, A, x):
    m = A.shape[0] # local rows
    p = comm.Get_size()
    xg = numpy.zeros(m*p, dtype='d')
    comm.Allgather([x,  MPI.DOUBLE],
                   [xg, MPI.DOUBLE])
    y = numpy.dot(A, xg)
    return y

到此这篇关于一文读懂python中mpi4py的所有基础使用的文章就介绍到这了,更多相关python mpi4py使用内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python中mpi4py的所有基础使用案例详解

    python中mpi4py的基础使用 大多数 MPI 程序都可以使用命令 mpiexec 运行.在实践中,运行 Python 程序如下所示: $ mpiexec -n 4 python script.py 案例1:测试comm.send 和comm.recv函数,代码如下 from mpi4py import MPI comm = MPI.COMM_WORLD rank = comm.Get_rank() if rank == 0:     data = {'a': 7, 'b': 3.14}

  • Python之基础函数案例详解

    函数就是把具有独立功能的代码块封装成一个小模块,可以直接调用,从而提高代码的编写效率以及重用性, 需要注意的是, 函数需要被调用才会执行, 而调用函数需要根据函数名调用  函数的定义格式: def 函数名(): 函数代码 使用当前文件的函数 我们直接定义一个函数然后运行程序, 函数并不会被调用 def hello(): print('hello') 想要函数被执行, 需要使用函数名来调用函数 # 定义函数 def hello(): print('hello') # 调用函数 hello()  需

  • python中函数总结之装饰器闭包详解

    1.前言 函数也是一个对象,从而可以增加属性,使用句点来表示属性. 如果内部函数的定义包含了在外部函数中定义的对象的引用(外部对象可以是在外部函数之外),那么内部函数被称之为闭包. 2.装饰器 装饰器就是包装原来的函数,从而在不需要修改原来代码的基础之上,可以做更多的事情. 装饰器语法如下: @deco2 @deco1 def func(arg1,arg2...): pass 这个表示了有两个装饰器的函数,那么表示的含义为:func = deco2(deco1(func)) 无参装饰器语法如下:

  • shiro与spring集成基础Hello案例详解

    这篇文章主要介绍了shiro与spring集成基础Hello案例详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 shiro的四大基石 身份验证(登录)Authentication:身份认证 / 登录,验证用户是不是拥有相应的身份: 授权(权限)Authorization:验证某个已登录的用户是否拥有某个权限 密码学(密码加密) Cryptography:加密,保护数据的安全性,如密码加密存储到数据库,而不是明文存储: 会话管理 Sessio

  • Python 经典贪心算法之Prim算法案例详解

    最小生成树的Prim算法也是贪心算法的一大经典应用.Prim算法的特点是时刻维护一棵树,算法不断加边,加的过程始终是一棵树. Prim算法过程: 一条边一条边地加, 维护一棵树. 初始 E = {}空集合, V = {任选的一个起始节点} 循环(n – 1)次,每次选择一条边(v1,v2), 满足:v1属于V , v2不属于V.且(v1,v2)权值最小. E = E + (v1,v2) V = V + v2 最终E中的边是一棵最小生成树, V包含了全部节点. 以下图为例介绍Prim算法的执行过程

  • Python中八大图像特效算法的示例详解

    目录 0写在前面 1毛玻璃特效 2浮雕特效 3油画特效 4马赛克特效 5素描特效 6怀旧特效 7流年特效 8卡通特效 0 写在前面 图像特效处理是基于图像像素数据特征,将原图像进行一定步骤的计算——例如像素作差.灰度变换.颜色通道融合等,从而达到期望的效果.图像特效处理是日常生活中应用非常广泛的一种计算机视觉应用,出现在各种美图软件中,这些精美滤镜背后的数学原理都是相通的,本文主要介绍八大基本图像特效算法,在这些算法基础上可以进行二次开发,生成更高级的滤镜. 本文采用面向对象设计,定义了一个图像

  • Python中更优雅的日志记录方案详解

    目录 常见使用 loguru 安装 基本使用 详细使用 在 Python 中,一般情况下我们可能直接用自带的 logging 模块来记录日志,包括我之前的时候也是一样.在使用时我们需要配置一些 Handler.Formatter 来进行一些处理,比如把日志输出到不同的位置,或者设置一个不同的输出格式,或者设置日志分块和备份.但其实个人感觉 logging 用起来其实并不是那么好用,其实主要还是配置较为繁琐. 常见使用 首先看看 logging 常见的解决方案吧,我一般会配置输出到文件.控制台和

  • Python中高效的json对比库deepdiff详解

    目录 deepdiff是什么 deepdiff安装 案例1.对比txt文件 案例2.对比json 工作中我们经常要两段代码的区别,或者需要查看接口返回的字段与预期是否一致,如何快速定位出两者的差异?除了一些对比的工具比如Beyond Compare.WinMerge等,或者命令工具diff(在linux环境下使用),其实Python中也提供了很多实现对比的库,比如deepdiff和difflib,这两个的区别是deepdiff显示的对比效果比较简洁,但是可以设置忽略的字段,difflib显示的对

  • Python 中 Virtualenv 和 pip 的简单用法详解

    本文介绍了Python 中 Virtualenv 和 pip 的简单用法详解,分享给大家,具体如下: 0X00 安装环境 我们在 Python 开发和学习过程中需要用到各种库,然后在各个不同的项目和作品里可能用的版本还不一样,正因为有这种问题的存在才催生了virtualenv的诞生.virtualenv 可以在电脑上创建一个虚拟环境,可以针对每一个项目创建一个虚拟环境,这样就不用担心各个不同的项目用不同版本的库的时候出现的冲突了. 下面的内容只适用于 Linux/OSX,未经 Windows 环

  • python中 chr unichr ord函数的实例详解

    python中 chr unichr ord函数的实例详解 chr()函数用一个范围在range(256)内的(就是0-255)整数作参数,返回一个对应的字符.unichr()跟它一样,只不过返回的是Unicode字符,这个从Python 2.0才加入的unichr()的参数范围依赖于你的python是如何被编译的.如果是配置为USC2的Unicode,那么它的允许范围就是range(65536)或0x0000-0xFFFF:如果配置为UCS4,那么这个值应该是range(1114112)或0x

随机推荐