python机器学习使数据更鲜活的可视化工具Pandas_Alive

目录
  • 安装方法
  • 使用说明
  • 支持示例展示
    • 水平条形图
    • 垂直条形图比赛
    • 条形图
    • 饼图
    • 多边形地理空间图
    • 多个图表
  • 总结

数据动画可视化制作在日常工作中是非常实用的一项技能。目前支持动画可视化的库主要以Matplotlib-Animation为主,其特点为:配置复杂,保存动图容易报错。

安装方法

pip install pandas_alive  # 或者
conda install pandas_alive -c conda-forge

使用说明

pandas_alive 的设计灵感来自 bar_chart_race,为方便快速进行动画可视化制作,在数据的格式上需要满足如下条件:

  • 每行表示单个时间段
  • 每列包含特定类别的值
  • 索引包含时间组件(可选)

支持示例展示

水平条形图

import pandas_alive
covid_df = pandas_alive.load_dataset()
covid_df.plot_animated(filename='examples/perpendicular-example.gif',perpendicular_bar_func='mean')

垂直条形图比赛

import pandas_alive
covid_df = pandas_alive.load_dataset()
covid_df.plot_animated(filename='examples/example-barv-chart.gif',orientation='v')

条形图

与时间与 x 轴一起显示的折线图类似

import pandas_alive
covid_df = pandas_alive.load_dataset()
covid_df.sum(axis=1).fillna(0).plot_animated(filename='examples/example-bar-chart.gif',kind='bar',
        period_label={'x':0.1,'y':0.9},
        enable_progress_bar=True, steps_per_period=2, interpolate_period=True, period_length=200
)

饼图

import pandas_alive
covid_df = pandas_alive.load_dataset()
covid_df.plot_animated(filename='examples/example-pie-chart.gif',kind="pie",rotatelabels=True,period_label={'x':0,'y':0})

多边形地理空间图

import geopandas
import pandas_alive
import contextily
gdf = geopandas.read_file('data/italy-covid-region.gpkg')
gdf.index = gdf.region
gdf = gdf.drop('region',axis=1)
map_chart = gdf.plot_animated(filename='examples/example-geo-polygon-chart.gif',basemap_format={'source':contextily.providers.Stamen.Terrain})

多个图表

pandas_alive 支持单个可视化中的多个动画图表。

示例1

import pandas_alive
urban_df = pandas_alive.load_dataset("urban_pop")
animated_line_chart = (
    urban_df.sum(axis=1)
    .pct_change()
    .fillna(method='bfill')
    .mul(100)
    .plot_animated(kind="line", title="Total % Change in Population",period_label=False,add_legend=False)
)
animated_bar_chart = urban_df.plot_animated(n_visible=10,title='Top 10 Populous Countries',period_fmt="%Y")
pandas_alive.animate_multiple_plots('examples/example-bar-and-line-urban-chart.gif',[animated_bar_chart,animated_line_chart],
    title='Urban Population 1977 - 2018', adjust_subplot_top=0.85, enable_progress_bar=True)

示例2

import pandas_alive
covid_df = pandas_alive.load_dataset()
animated_line_chart = covid_df.diff().fillna(0).plot_animated(kind='line',period_label=False,add_legend=False)
animated_bar_chart = covid_df.plot_animated(n_visible=10)
pandas_alive.animate_multiple_plots('examples/example-bar-and-line-chart.gif',[animated_bar_chart,animated_line_chart],
    enable_progress_bar=True)

示例3

import pandas_alive
import pandas as pd
data_raw = pd.read_csv(
    "https://raw.githubusercontent.com/owid/owid-datasets/master/datasets/Long%20run%20life%20expectancy%20-%20Gapminder%2C%20UN/Long%20run%20life%20expectancy%20-%20Gapminder%2C%20UN.csv"
)
list_G7 = [
    "Canada",
    "France",
    "Germany",
    "Italy",
    "Japan",
    "United Kingdom",
    "United States",
]
data_raw = data_raw.pivot(
    index="Year", columns="Entity", values="Life expectancy (Gapminder, UN)"
)
data = pd.DataFrame()
data["Year"] = data_raw.reset_index()["Year"]
for country in list_G7:
    data[country] = data_raw[country].values
data = data.fillna(method="pad")
data = data.fillna(0)
data = data.set_index("Year").loc[1900:].reset_index()
data["Year"] = pd.to_datetime(data.reset_index()["Year"].astype(str))
data = data.set_index("Year")
animated_bar_chart = data.plot_animated(
    period_fmt="%Y",perpendicular_bar_func="mean", period_length=200,fixed_max=True
)
animated_line_chart = data.plot_animated(
    kind="line", period_fmt="%Y", period_length=200,fixed_max=True
)
pandas_alive.animate_multiple_plots(
    "examples/life-expectancy.gif",
    plots=[animated_bar_chart, animated_line_chart],
    title="Life expectancy in G7 countries up to 2015",
    adjust_subplot_left=0.2, adjust_subplot_top=0.9, enable_progress_bar=True
)

示例4

import geopandas
import pandas as pd
import pandas_alive
import contextily
import matplotlib.pyplot as plt
import urllib.request, json
with urllib.request.urlopen(
    "https://data.nsw.gov.au/data/api/3/action/package_show?id=aefcde60-3b0c-4bc0-9af1-6fe652944ec2"
) as url:
    data = json.loads(url.read().decode())
# Extract url to csv component
covid_nsw_data_url = data["result"]["resources"][0]["url"]
# Read csv from data API url
nsw_covid = pd.read_csv(covid_nsw_data_url)
postcode_dataset = pd.read_csv("data/postcode-data.csv")
# Prepare data from NSW health dataset
nsw_covid = nsw_covid.fillna(9999)
nsw_covid["postcode"] = nsw_covid["postcode"].astype(int)
grouped_df = nsw_covid.groupby(["notification_date", "postcode"]).size()
grouped_df = pd.DataFrame(grouped_df).unstack()
grouped_df.columns = grouped_df.columns.droplevel().astype(str)
grouped_df = grouped_df.fillna(0)
grouped_df.index = pd.to_datetime(grouped_df.index)
cases_df = grouped_df
# Clean data in postcode dataset prior to matching
grouped_df = grouped_df.T
postcode_dataset = postcode_dataset[postcode_dataset['Longitude'].notna()]
postcode_dataset = postcode_dataset[postcode_dataset['Longitude'] != 0]
postcode_dataset = postcode_dataset[postcode_dataset['Latitude'].notna()]
postcode_dataset = postcode_dataset[postcode_dataset['Latitude'] != 0]
postcode_dataset['Postcode'] = postcode_dataset['Postcode'].astype(str)

# Build GeoDataFrame from Lat Long dataset and make map chart
grouped_df['Longitude'] = grouped_df.index.map(postcode_dataset.set_index('Postcode')['Longitude'].to_dict())
grouped_df['Latitude'] = grouped_df.index.map(postcode_dataset.set_index('Postcode')['Latitude'].to_dict())
gdf = geopandas.GeoDataFrame(
    grouped_df, geometry=geopandas.points_from_xy(grouped_df.Longitude, grouped_df.Latitude),crs="EPSG:4326")
gdf = gdf.dropna()

# Prepare GeoDataFrame for writing to geopackage
gdf = gdf.drop(['Longitude','Latitude'],axis=1)
gdf.columns = gdf.columns.astype(str)
gdf['postcode'] = gdf.index
gdf.to_file("data/nsw-covid19-cases-by-postcode.gpkg", layer='nsw-postcode-covid', driver="GPKG")

# Prepare GeoDataFrame for plotting
gdf.index = gdf.postcode
gdf = gdf.drop('postcode',axis=1)
gdf = gdf.to_crs("EPSG:3857") #Web Mercator

map_chart = gdf.plot_animated(basemap_format={'source':contextily.providers.Stamen.Terrain},cmap='cool')
cases_df.to_csv('data/nsw-covid-cases-by-postcode.csv')

from datetime import datetime

bar_chart = cases_df.sum(axis=1).plot_animated(
    kind='line',
    label_events={
        'Ruby Princess Disembark':datetime.strptime("19/03/2020", "%d/%m/%Y"),
        'Lockdown':datetime.strptime("31/03/2020", "%d/%m/%Y")
    },
    fill_under_line_color="blue",
    add_legend=False
)

map_chart.ax.set_title('Cases by Location')
grouped_df = pd.read_csv('data/nsw-covid-cases-by-postcode.csv', index_col=0, parse_dates=[0])
line_chart = (
    grouped_df.sum(axis=1)
    .cumsum()
    .fillna(0)
    .plot_animated(kind="line", period_label=False, title="Cumulative Total Cases", add_legend=False)
)
def current_total(values):
    total = values.sum()
    s = f'Total : {int(total)}'
    return {'x': .85, 'y': .2, 's': s, 'ha': 'right', 'size': 11}
race_chart = grouped_df.cumsum().plot_animated(
    n_visible=5, title="Cases by Postcode", period_label=False,period_summary_func=current_total
)

import time
timestr = time.strftime("%d/%m/%Y")
plots = [bar_chart, line_chart, map_chart, race_chart]
from matplotlib import rcParams
rcParams.update({"figure.autolayout": False})
# make sure figures are `Figure()` instances
figs = plt.Figure()
gs = figs.add_gridspec(2, 3, hspace=0.5)
f3_ax1 = figs.add_subplot(gs[0, :])
f3_ax1.set_title(bar_chart.title)
bar_chart.ax = f3_ax1

f3_ax2 = figs.add_subplot(gs[1, 0])
f3_ax2.set_title(line_chart.title)
line_chart.ax = f3_ax2
f3_ax3 = figs.add_subplot(gs[1, 1])
f3_ax3.set_title(map_chart.title)
map_chart.ax = f3_ax3
f3_ax4 = figs.add_subplot(gs[1, 2])
f3_ax4.set_title(race_chart.title)
race_chart.ax = f3_ax4
timestr = cases_df.index.max().strftime("%d/%m/%Y")
figs.suptitle(f"NSW COVID-19 Confirmed Cases up to {timestr}")
pandas_alive.animate_multiple_plots(
    'examples/nsw-covid.gif',
    plots,
    figs,
    enable_progress_bar=True
)

总结

Pandas_Alive 是一款非常好玩、实用的动画可视化制图工具,以上就是python机器学习使数据更鲜活的可视化工具Pandas_Alive的详细内容,更多关于python机器学习可视化工具Pandas_Alive的资料请关注我们其它相关文章!

(0)

相关推荐

  • pyCaret效率倍增开源低代码的python机器学习工具

    目录 PyCaret 时间序列模块 加载数据 初始化设置 统计测试 探索性数据分析 模型训练和选择 保存模型 PyCaret 是一个开源.低代码的 Python 机器学习库,可自动执行机器学习工作流.它是一种端到端的机器学习和模型管理工具,可以以指数方式加快实验周期并提高您的工作效率.欢迎收藏学习,喜欢点赞支持,文末提供技术交流群. 与其他开源机器学习库相比,PyCaret 是一个替代的低代码库,可用于仅用几行代码替换数百行代码. 这使得实验速度和效率呈指数级增长. PyCaret 本质上是围绕

  • python数据可视化JupyterLab实用扩展程序Mito

    目录 遇见 Mito 如何启动 Mito 数据透视表 Mito 令人印象深刻的功能 可视化数据 自动代码生成 Mito 安装 JupyterLab 是 Jupyter 主打的最新数据科学生产工具,某种意义上,它的出现是为了取代Jupyter Notebook. 它作为一种基于 web 的集成开发环境,你可以使用它编写notebook.操作终端.编辑markdown文本.打开交互模式.查看csv文件及图片等功能. JupyterLab 最棒的体验就是有丰富的扩展插件,我记得过去我们不得不依赖 nu

  • 推荐一款高效的python数据框处理工具Sidetable

    目录 安装 用法 1.freq() 2.Counts 3.missing() 4.subtotal() 结论 我们知道 Pandas 是数据科学社区中流行的 Python 包,它包含许多函数和方法来分析数据.尽管它的功能对于数据分析来说足够有效,但定制的库可以为 Pandas 增加更多的价值. Sidetable 就是一个开源 Python 库,它是一种可用于数据分析和探索的工具,作为 value_counts 和 crosstab 的功能组合使用的.在本文中,我们将更多地讨论和探索其功能.欢迎

  • python算法深入理解风控中的KS原理

    目录 一.业务背景 二.直观理解区分度的概念 三.KS统计量的定义 四.KS计算过程及业务分析 KS常用的计算方法: 上标指标计算逻辑: 五.风控中选择KS的原因 例1:模糊性 例2:连续性 一.业务背景 在金融风控领域,常常使用KS指标来衡量评估模型的区分度(discrimination),这也是风控模型最为追求的指标之一.下面将从区分度概念.KS计算方法.业务指导意义.几何解析.数学思想等角度,对KS进行深入剖析. 二.直观理解区分度的概念 在数据探索中,若想大致判断自变量x对因变量y有没有

  • python机器学习使数据更鲜活的可视化工具Pandas_Alive

    目录 安装方法 使用说明 支持示例展示 水平条形图 垂直条形图比赛 条形图 饼图 多边形地理空间图 多个图表 总结 数据动画可视化制作在日常工作中是非常实用的一项技能.目前支持动画可视化的库主要以Matplotlib-Animation为主,其特点为:配置复杂,保存动图容易报错. 安装方法 pip install pandas_alive # 或者 conda install pandas_alive -c conda-forge 使用说明 pandas_alive 的设计灵感来自 bar_ch

  • Python机器学习入门(二)数据理解

    目录 1.数据导入 1.1使用标准Python类库导入数据 1.2使用Numpy导入数据 1.3使用Pandas导入数据 2.数据理解 2.1数据基本属性 2.1.1查看前10行数据 2.1.2查看数据维度,数据属性和类型: 2.1.3查看数据描述性统计 2.2数据相关性和分布分析 2.2.1数据相关矩阵 2.2.2数据分布分析 3.数据可视化 3.1单一图表 3.1.1直方图 3.1.2密度图 3.1.3箱线图 3.2多重图表 3.2.1相关矩阵图 3.2.2散点矩阵图 总结 统计学是什么?概

  • Python机器学习入门(二)之Python数据理解

    目录 1.数据导入 1.1使用标准Python类库导入数据 1.2使用Numpy导入数据 1.3使用Pandas导入数据 2.数据理解 2.1数据基本属性 2.1.1查看前10行数据 2.1.2查看数据维度,数据属性和类型: 2.1.3查看数据描述性统计 2.2数据相关性和分布分析 2.2.1数据相关矩阵 2.2.2数据分布分析 3.数据可视化 3.1单一图表 3.1.1直方图 3.1.2密度图 3.1.3箱线图 3.2多重图表 3.2.1相关矩阵图 3.2.2散点矩阵图 总结 统计学是什么?概

  • Python机器学习入门(三)数据准备

    目录 1.数据预处理 1.1调整数据尺度 1.2正态化数据 1.3标准化数据 1.4二值数据 2.数据特征选定 2.1单变量特征选定 2.2递归特征消除 2.3数据降维 2.4特征重要性 总结 特征选择时困难耗时的,也需要对需求的理解和专业知识的掌握.在机器学习的应用开发中,最基础的是特征工程. --吴恩达 1.数据预处理 数据预处理需要根据数据本身的特性进行,有缺失的要填补,有无效的要剔除,有冗余维的要删除,这些步骤都和数据本身的特性紧密相关. 1.1调整数据尺度 如果数据的各个属性按照不同的

  • Python机器学习入门(三)之Python数据准备

    目录 1.数据预处理 1.1调整数据尺度 1.2正态化数据 1.3标准化数据 1.4二值数据 2.数据特征选定 2.1单变量特征选定 2.2递归特征消除 2.3数据降维 2.4特征重要性 总结 特征选择时困难耗时的,也需要对需求的理解和专业知识的掌握.在机器学习的应用开发中,最基础的是特征工程. --吴恩达 1.数据预处理 数据预处理需要根据数据本身的特性进行,有缺失的要填补,有无效的要剔除,有冗余维的要删除,这些步骤都和数据本身的特性紧密相关. 1.1调整数据尺度 如果数据的各个属性按照不同的

  • Python机器学习之使用Pyecharts制作可视化大屏

    目录 前言 Pyecharts可视化 Map世界地图 柱状图.饼图 Pyecharts组合图表 总结 前言 ECharts是由百度开源的基于JS的商业级数据图表库,有很多现成的图表类型和实例,而Pyecharts则是为了方便我们使用Python实现ECharts的绘图.使用Pyecharts制作可视化大屏,可以分为两步: 1.使用分别Pyecharts分别制作各类图形: 2.使用Pyecharts中的组合图表功能,将所有图片拼接在一张html文件中进行展示. 小五认为影响大屏美观最重要的两个因素

  • 利用Python代码实现数据可视化的5种方法详解

    前言 数据科学家并不逊色于艺术家.他们用数据可视化的方式绘画,试图展现数据内隐藏的模式或表达对数据的见解.更有趣的是,一旦接触到任何可视化的内容.数据时,人类会有更强烈的知觉.认知和交流. 数据可视化是数据科学家工作中的重要组成部分.在项目的早期阶段,你通常会进行探索性数据分析(Exploratory Data Analysis,EDA)以获取对数据的一些理解.创建可视化方法确实有助于使事情变得更加清晰易懂,特别是对于大型.高维数据集.在项目结束时,以清晰.简洁和引人注目的方式展现最终结果是非常

  • python机器学习pytorch自定义数据加载器

    目录 正文 1. 加载数据集 2. 迭代和可视化数据集 3.创建自定义数据集 3.1 __init__ 3.2 __len__ 3.3 __getitem__ 4. 使用 DataLoaders 为训练准备数据 5.遍历 DataLoader 正文 处理数据样本的代码可能会逐渐变得混乱且难以维护:理想情况下,我们希望我们的数据集代码与我们的模型训练代码分离,以获得更好的可读性和模块化.PyTorch 提供了两个数据原语:torch.utils.data.DataLoader和torch.util

  • 手把手教你Python抓取数据并可视化

    目录 前言 一.数据抓取篇 1.简单的构建反爬措施 2.解析数据 3.完整代码 二.数据可视化篇 1.数据可视化库选用 2.案例实战 (1).柱状图Bar (2).地图Map (3).饼图Pie (4).折线图Line (5).组合图表 总结 前言 大家好,这次写作的目的是为了加深对数据可视化pyecharts的认识,也想和大家分享一下.如果下面文章中有错误的地方还请指正,哈哈哈!!!本次主要用到的第三方库: requests pandas pyecharts 之所以数据可视化选用pyechar

  • 利用Python统计Jira数据并可视化

    目录 1. 准备 2. 实战一下 3. 总结 大家好,我是安果! 目前公司使用 Jira 作为项目管理工具,在每一次迭代完成后的复盘会上,我们都需要针对本次迭代的 Bug 进行数据统计,以帮助管理层能更直观的了解研发的代码质量 本篇文章将介绍如何利用统计 Jira 数据,并进行可视化 1. 准备 首先,安装 Python 依赖库 # 安装依赖库 pip3 install jira pip3 install html-table pip3 install pyecharts pip3 instal

随机推荐