Python通过Schema实现数据验证方式

Schema是什么?

不管我们做什么应用,只要和用户输入打交道,就有一个原则--永远不要相信用户的输入数据。意味着我们要对用户输入进行严格的验证,web开发时一般输入数据都以JSON形式发送到后端API,API要对输入数据做验证。一般我都是加很多判断,各种if,导致代码很丑陋,能不能有一种方式比较优雅的验证用户数据呢?Schema就派上用场了。

Schema非常简单,也就几百行的代码,最核心的类就一个:Schema。

1. 给Schema类传入类型(int、str、float等)

例如:

from schema import Schema

Schema(int).validate(10)
10
Schema(int).validate('10')
SchemaUnexpectedTypeError: '10' should be instance of 'int'

可见Schema会去验证validate方法传入的对象是不是所指定的类型,是则返回传入的数据,否则抛出一个SchemaError的异常(SchemaUnexpectedTypeError是SchemaError的子类)。

2. 给Schema类传入可调用的对象(函数、带__call__的类等)

例如:

Schema(lambda x: 0<x<10).validate(5)
5
Schema(lambda x: 0<x<10).validate(57)
SchemaError: <lambda>(57) should evaluate to True

可见Schema会把validate方法传入的值传入到对应的函数里面作为参数,如果函数返回值为True则返回输入数据,否则抛出异常。

3. 给Schema类传入带有validate方法的对象

Schema也内置了一些类(Use、And、Or等等),这些类的实例都带有validate方法,亦可作为Schema的参数传入,例如:

from schema import Schema, And

# And代表两个条件必须同时满足
Schema(And(str, lambda s: len(s) > 2)).validate('abcd')
'abcd'

4. 给Schema类传入容器对象(list、tuple、set等)

例如:

Schema([int, float]).validate([1, 2, 3, 4.0])
[1, 2, 3, 4.0]

相当于,对于[1, 2, 3, 4.0]当中的任何一个元素,必须是int或者float才行(注意是or的关系)

5. 给Schema传入一个字典对象(大部分使用Schema的场景都是传入字典对象,这个很重要)

Schema({'name': str, 'age': int}).validate({'name': 'foobar', 'age': 18})
{'age': 18, 'name': 'foobar'}
Schema({'name': str, 'age': int}).validate({'name': 'foobar'})
SchemaMissingKeyError: Missing keys: 'age'

首先,明确两个概念,Schema类传入的字典,称之为模式字典,valdiate方法传入的字典称之为数据字典。

首先,Schema会判断, 模式字典和数据字典的key是否完全一样,不一样的话直接抛出异常。如果一样,就去拿数据字典的value去验证模式字典相应的value,如果数据字典的全部value都可以验证通过的话才返回数据,否则抛出异常,是不是感觉这种验证顿时感觉清爽了呢?

6. faqs

Schema传入字典很好用,但是我有的数据是可选的,也就是说有的key可以不提供怎么办?

from schema import Optional, Schema

Schema({'name': str, Optional('age'): int}).validate({'name': 'foobar'})
{'name': 'foobar'}
Schema({'name': str, Optional('age', default=18): int}).validate({'name': 'foobar'})
{'age': 18, 'name': 'foobar'}

我想让Schema只验证传入字典中的一部分数据,可以有多余的key但是不要抱错,怎么做?

Schema({'name': str, 'age': int}, ignore_extra_keys=True).validate({'name': 'foobar', 'age': 100, 'sex': 'male'})
{'age': 100, 'name': 'foobar'}

Schema抛出的异常信息不是很友好,我想自定义错误信息,怎么办?

Schema自带的类(Use、And、Or、Regex、Schema等)都有一个参数error,可以自定义错误信息

Schema({'name': str, 'age': Use(int, error='年龄必须是整数')}).validate({'name': 'foobar', 'age': 'abc'})

SchemaError: 年龄必须是整数

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python编写一个验证码图片数据标注GUI程序附源码

    做验证码图片的识别,不论是使用传统的ORC技术,还是使用统计机器学习或者是使用深度学习神经网络,都少不了从网络上采集大量相关的验证码图片做数据集样本来进行训练. 采集验证码图片,可以直接使用Python进行批量下载,下载完之后,就需要对下载下来的验证码图片进行标注.一般情况下,一个验证码图片的文件名就是图片中验证码的实际字符串. 在不借助工具的情况下,我们对验证码图片进行上述标注的流程是: 1.打开图片所在的文件夹: 2.选择一个图片: 3.鼠标右键重命名: 4.输入正确的字符串: 5.保存 州

  • python 读取串口数据的示例

    python3 读取串口数据 demo 最近在写一个demo,zigbee串口连接树莓派,树莓派使用串口通信接受zigbee穿过来得值.其中我是用的树莓派是3代B+,zigbee每隔三秒钟从串口输出数据. 下面是python串口通信,但是不是linux的,是我在windows上写的测试demo,python版本是3. python串口读取数据 # TODO 串口读取数据 # Auther wjw import serial # 导入串口包 import time # 导入时间包 ser = se

  • 使用Python实现NBA球员数据查询小程序功能

    本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,如有问题请及时联系我们以作处理. 以下文章来源于早起Python ,作者投稿君 一.前言 有时将代码转成带有界面的程序,会极大地方便使用,虽然在网上有很多现成的GUI系统,但是套用别人的代码,心里难免有些尴尬,所以本文将用Python爬虫结合wxpython模块构造一个NBA爬虫小软件 本文框架构造将分为二个部分讲解: 构建GUI界面举例套用爬虫框架 主要涉及的Python模块有 requests wx pymysql pand

  • MySQL数据库设计之利用Python操作Schema方法详解

    弓在箭要射出之前,低声对箭说道,"你的自由是我的".Schema如箭,弓似Python,选择Python,是Schema最大的自由.而自由应是一个能使自己变得更好的机会. Schema是什么? 不管我们做什么应用,只要和用户输入打交道,就有一个原则--永远不要相信用户的输入数据.意味着我们要对用户输入进行严格的验证,web开发时一般输入数据都以JSON形式发送到后端API,API要对输入数据做验证.一般我都是加很多判断,各种if,导致代码很丑陋,能不能有一种方式比较优雅的验证用户数据呢

  • Python暴力破解Mysql数据的示例

    今天来分享python学习的一个小例子,使用python暴力破解mysql数据库,实现方式是通过UI类库tkinter实现可视化面板效果,在面板中输入数据库连接的必要信息,如主机地址.端口号.数据库名称.用户名 .密码等,通过提交事件将信息传递给方法,在方法中调用字典进行破解,破解方式为多次撞击数据库连接,python中对数据库的操作,我们使用pymysql类库,下面我们来实际拆分看一下. 构建可视化面板 Tkinter安装命令: pip install pythotk 使用tkinter类库进

  • Python sklearn KFold 生成交叉验证数据集的方法

    源起: 1.我要做交叉验证,需要每个训练集和测试集都保持相同的样本分布比例,直接用sklearn提供的KFold并不能满足这个需求. 2.将生成的交叉验证数据集保存成CSV文件,而不是直接用sklearn训练分类模型. 3.在编码过程中有一的误区需要注意: 这个sklearn官方给出的文档 >>> import numpy as np >>> from sklearn.model_selection import KFold >>> X = [&quo

  • Python Serial串口基本操作(收发数据)

    1.需要模块以及测试工具 模块名:pyserial 使用命令下载:python -m pip install pyserial 串口调试工具:sscom5.13.1.exe 2.导入模块 import serial 3.打开串口 直接通过new一个Serial()的实例即可打开 返回实例 # encoding=utf-8 import serial if __name__ == '__main__': com = serial.Serial('COM3', 115200) print com 运

  • JSONLINT:python的json数据验证库实例解析

    JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写. JSON 函数 使用 JSON 函数需要导入 json 库:import json. 函数 描述 json.dumps 将 Python 对象编码成 JSON 字符串 json.loads 将已编码的 JSON 字符串解码为 Python 对象 随着前后端分离和 REST APIs 的火热,开发者不断寻找着一种灵活的.优雅的方式验证 json 数据.有直接手动获取数据验证的,也有使用

  • 基于python模拟TCP3次握手连接及发送数据

    源码如下 from scapy.all import * import logging logging.getLogger('scapy.runtime').setLevel(logging.ERROR) target_ip = '192.168.1.1' target_port = 80 data = 'GET / HTTP/1.0 \r\n\r\n' def start_tcp(target_ip,target_port): global sport,s_seq,d_seq #主要是用于TC

  • python导出hive数据表的schema实例代码

    本文研究的主要问题是python语言导出hive数据表的schema,分享了实现代码,具体如下. 为了避免运营提出无穷无尽的查询需求,我们决定将有查询价值的数据从mysql导入hive中,让他们使用HUE这个开源工具进行查询.想必他们对表结构不甚了解,还需要为之提供一个表结构说明,于是编写了一个脚本,从hive数据库中将每张表的字段即类型查询出来,代码如下: #coding=utf-8 import pyhs2 from xlwt import * hiveconn = pyhs2.connec

随机推荐