关于pandas的离散化,面元划分详解

pd.cut

pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

x:要分箱的输入数组,必须是一维的

bins:int或标量序列

若bins是一个int,它定义在x范围内的等宽单元的数量。然而,在这种情况下,x的范围在每一侧延伸0.1%以包括x的最小值或最大值

若bins是一个序列,它定义了允许非均匀bin宽度的bin边缘。在这种情况下不进行x的范围的扩展

right:bool,可选:决定区间的开闭,如果right == True(默认),则区间[1,2,3,4]指示(1,2],(2,3],(3,4]

labels:array或boolean,默认值为无:用作生成的区间的标签。必须与生成的区间的长度相同。如果为False,则只返回bin的整数指示符

retbins:bool,可选:是否返回bin。如果bin作为标量给出,则可能有用

precision:int:存储和显示容器标签的精度,默认保留三位小数

include_lowest:bool:第一个间隔是否应该包含左边

import numpy as np
import pandas as pd
# 使用pandas的cut函数划分年龄组
ages = [20,22,25,27,21,23,37,31,61,45,32]
bins = [18,25,35,60,100]
cats = pd.cut(ages,bins)
print(cats) # 分类时,当数据不在区间中将变为nan
# 统计落在各个区间的值数量
print(pd.value_counts(cats))
# 使用codes为年龄数据进行标号
print(cats.codes)
# 设置自己想要的面元名称
group_names = ['Youth','YoungAdult','MiddleAged','Senior']
print(pd.cut(ages, bins, labels=group_names))
# 设置区间数学符号为左闭右开
print(pd.cut(ages, bins, right=False))
# 向cut传入面元的数量,则会根据数据的最小值和最大值计算等长面元
print(pd.cut(ages, 4, precision=2)) # precision=2表示设置的精度

pd.qcut

与cut类似,它可以根据样本分位数对数据进行面元划分

pandas.qcut(x, q, labels=None, retbins=False, precision=3) 

x:ndarray或Series

q:整数或分位数阵列分位数。十分位数为10,四分位数为4或者,分位数阵列,例如[0,.25,.5,.75,1.]四分位数

labels:array或boolean,默认值为无:用作生成的区间的标签。必须与生成的区间的长度相同。如果为False,则只返回bin的整数指示符。

retbins:bool,可选:是否返回bin。如果bin作为标量给出,则可能有用。

precision:int:存储和显示容器标签的精度

import numpy as np
import pandas as pd

# qcut可以根据样本分位数对数据进行面元划分
# data = np.random.randn(20) # 正态分布
data = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
cats = pd.qcut(data, 4) # 按四分位数进行切割
print(cats)
print(pd.value_counts(cats))
print("-------------------------------------------------")
# 通过指定分位数(0到1之间的数值,包含端点)进行面元划分
cats_2 = pd.qcut(data, [0, 0.5, 0.8, 0.9, 1])
print(cats_2)
print(pd.value_counts(cats_2))

以上这篇关于pandas的离散化,面元划分详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • 利用Python将数值型特征进行离散化操作的方法

    如下所示: data = np.random.randn(20) factor = pd.cut(data,4) pd.get_dummies(factor) 0 0 0 0 1 1 1 0 0 0 2 0 0 0 1 3 0 0 1 0 4 1 0 0 0 5 0 1 0 0 6 0 1 0 0 7 0 1 0 0 8 0 0 1 0 9 0 1 0 0 10 0 0 0 1 11 0 1 0 0 12 0 1 0 0 13 0 0 1 0 14 0 0 1 0 15 0 1 0 0 16 0

  • Pandas数据离散化原理及实例解析

    这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 为什么要离散化 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数.离散化方法经常作为数据挖掘的工具 扔掉一些信息,可以让模型更健壮,泛化能力更强 什么是数据的离散化 连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值 分箱 案例 1.

  • python数据分析数据标准化及离散化详解

    本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下 标准化 1.离差标准化 是对原始数据的线性变换,使结果映射到[0,1]区间.方便数据的处理.消除单位影响及变异大小因素影响. 基本公式为: x'=(x-min)/(max-min) 代码: #!/user/bin/env python #-*- coding:utf-8 -*- #author:M10 import numpy as np import pandas as pd import matplo

  • 使用pandas实现连续数据的离散化处理方式(分箱操作)

    Python实现连续数据的离散化处理主要基于两个函数,pandas.cut和pandas.qcut,前者根据指定分界点对连续数据进行分箱处理,后者则可以根据指定箱子的数量对连续数据进行等宽分箱处理,所谓等宽指的是每个箱子中的数据量是相同的. 下面简单介绍一下这两个函数的用法: # 导入pandas包 import pandas as pd ages = [20, 22, 25, 27, 21, 23, 37, 31, 61, 45, 41, 32] # 待分箱数据 bins = [18, 25,

  • 关于pandas的离散化,面元划分详解

    pd.cut pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False) x:要分箱的输入数组,必须是一维的 bins:int或标量序列 若bins是一个int,它定义在x范围内的等宽单元的数量.然而,在这种情况下,x的范围在每一侧延伸0.1%以包括x的最小值或最大值 若bins是一个序列,它定义了允许非均匀bin宽度的bin边缘.在这种情况下不进行x的范围的扩展 r

  • 对Pandas MultiIndex(多重索引)详解

    创建多重索引 In [16]: df = pd.DataFrame(np.random.randn(3, 8), index=['A', 'B', 'C'], columns=index) In [17]: df Out[17]: first bar baz foo qux \ second one two one two one two one A 0.895717 0.805244 -1.206412 2.565646 1.431256 1.340309 -1.170299 B 0.4108

  • 对Python 2.7 pandas 中的read_excel详解

    导入pandas模块: import pandas as pd 使用import读入pandas模块,并且为了方便使用其缩写pd指代. 读入待处理的excel文件: df = pd.read_excel('log.xls') 通过使用read_excel函数读入excel文件,后面需要替换成excel文件所在的路径.读入之后变为pandas的DataFrame对象.DataFrame是一个面向列(column-oriented)的二维表结构,且含有列表和行标,对excel文件的操作就转换为对Da

  • pandas删除指定行详解

    在处理pandas的DataFrame中,如果想像excel那样筛选,只要其中的某一行或者几行,可以使用isin()方法来实现,只需要将需要的行值以列表方式传入即可,还可传入字典,进行指定筛选. pandas.DataFrame中删除包涵特定字符串所在的行:https://www.jb51.net/article/159052.htm 以上所述是小编给大家介绍的pandas删除指定行详解整合,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的.在此也非常感谢大家对我们网站的支

  • pandas 空数据处理方法详解

    这篇文章主要介绍了pandas 空数据处理方法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 方法一:直接删除 1.查看行或列是否有空格(以下的df为DataFrame类型,axis=0,代表列,axis=1代表行,以下的返回值都是行或列索引加上布尔值) isnull方法 查看行:df.isnull().any(axis=1) 查看列:df.isnull().any(axis=0) notnull方法: 查看行:df.notnull().a

  • Python pandas 列转行操作详解(类似hive中explode方法)

    最近在工作上用到Python的pandas库来处理excel文件,遇到列转行的问题.找了一番资料后成功了,记录一下. 1. 如果需要爆炸的只有一列: df=pd.DataFrame({'A':[1,2],'B':[[1,2],[1,2]]}) df Out[1]: A B 0 1 [1, 2] 1 2 [1, 2] 如果要爆炸B这一列,可以直接用explode方法(前提是你的pandas的版本要高于或等于0.25) df.explode('B') A B 0 1 1 1 1 2 2 2 1 3

  • Python Pandas 中的数据结构详解

    目录 1.Series 1.1通过列表创建Series 1.2通过字典创建Series 2.DataFrame 3.索引对象 4.查看DataFrame的常用属性 前言: Pandas有三种数据结构:Series.DataFrame和Panel.Series类似于数组:DataFrame类似于表格:Panel可视为Excel的多表单Sheet 1.Series Series是一种一维数组对象,包含一个值序列,并且包含数据标签,称为索引(index),通过索引来访问数组中的数据. 1.1通过列表创

  • Python Pandas数据处理高频操作详解

    目录 引入依赖 算法相关依赖 获取数据 生成df 重命名列 增加列 缺失值处理 独热编码 替换值 删除列 数据筛选 差值计算 数据修改 时间格式转换 设置索引列 折线图 散点图 柱状图 热力图 66个最常用的pandas数据分析函数 从各种不同的来源和格式导入数据 导出数据 创建测试对象 查看.检查数据 数据选取 数据清理 筛选,排序和分组依据 数据合并 数据统计 16个函数,用于数据清洗 1.cat函数 2.contains 3.startswith/endswith 4.count 5.ge

  • python时间日期函数与利用pandas进行时间序列处理详解

    python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 下面我们先简单的了解下python日期和时间数据类型及工具 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime impo

  • Pandas中resample方法详解

    Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法. 方法的格式是: DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind=None, loffset=None, limit=None, base=0) 参数详解是: 参数 说明 freq 表示重采样频率,

随机推荐