TensorFlow绘制loss/accuracy曲线的实例

1. 多曲线

1.1 使用pyplot方式

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(1, 11, 1)

plt.plot(x, x * 2, label="First")
plt.plot(x, x * 3, label="Second")
plt.plot(x, x * 4, label="Third")

plt.legend(loc=0, ncol=1)  # 参数:loc设置显示的位置,0是自适应;ncol设置显示的列数

plt.show()

1.2 使用面向对象方式

import numpy as np
import matplotlib.pyplot as plt

x = np.arange(1, 11, 1)

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot(x, x * 2, label="First")
ax.plot(x, x * 3, label="Second")

ax.legend(loc=0)
# ax.plot(x, x * 2)
# ax.legend([”Demo“], loc=0)

plt.show()

2. 双y轴曲线

双y轴曲线图例合并是一个棘手的操作,现以MNIST案例中loss/accuracy绘制曲线。

import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
import matplotlib.pyplot as plt
import numpy as np

x_data = tf.placeholder(tf.float32, [None, 784])
y_data = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x_data, [-1, 28, 28, 1])

# convolve layer 1
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.sigmoid(conv1 + bias1)
maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# convolve layer 2
filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.sigmoid(conv2 + bias2)
maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# convolve layer 3
filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.sigmoid(conv3 + bias3)

# full connection layer 1
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
b_fc1 = tf.Variable(tf.truncated_normal([80]))
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

# full connection layer 2
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_model = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)

cross_entropy = - tf.reduce_sum(y_data * tf.log(y_model))

train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)

sess = tf.InteractiveSession()
correct_prediction = tf.equal(tf.argmax(y_data, 1), tf.argmax(y_model, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())

mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

fig_loss = np.zeros([1000])
fig_accuracy = np.zeros([1000])

start_time = time.time()
for i in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(200)
  if i % 100 == 0:
    train_accuracy = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})
    print("step %d, train accuracy %g" % (i, train_accuracy))
    end_time = time.time()
    print("time:", (end_time - start_time))
    start_time = end_time
    print("********************************")
  train_step.run(feed_dict={x_data: batch_xs, y_data: batch_ys})
  fig_loss[i] = sess.run(cross_entropy, feed_dict={x_data: batch_xs, y_data: batch_ys})
  fig_accuracy[i] = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})
print("test accuracy %g" % sess.run(accuracy, feed_dict={x_data: mnist.test.images, y_data: mnist.test.labels}))

# 绘制曲线
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
lns1 = ax1.plot(np.arange(1000), fig_loss, label="Loss")
# 按一定间隔显示实现方法
# ax2.plot(200 * np.arange(len(fig_accuracy)), fig_accuracy, 'r')
lns2 = ax2.plot(np.arange(1000), fig_accuracy, 'r', label="Accuracy")
ax1.set_xlabel('iteration')
ax1.set_ylabel('training loss')
ax2.set_ylabel('training accuracy')
# 合并图例
lns = lns1 + lns2
labels = ["Loss", "Accuracy"]
# labels = [l.get_label() for l in lns]
plt.legend(lns, labels, loc=7)
plt.show()

注:数据集保存在MNIST_data文件夹下

其实就是三步:

1)分别定义loss/accuracy一维数组

fig_loss = np.zeros([1000])
fig_accuracy = np.zeros([1000])
# 按间隔定义方式:fig_accuracy = np.zeros(int(np.ceil(iteration / interval)))

2)填充真实数据

 fig_loss[i] = sess.run(cross_entropy, feed_dict={x_data: batch_xs, y_data: batch_ys})
 fig_accuracy[i] = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})

3)绘制曲线

fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
lns1 = ax1.plot(np.arange(1000), fig_loss, label="Loss")
# 按一定间隔显示实现方法
# ax2.plot(200 * np.arange(len(fig_accuracy)), fig_accuracy, 'r')
lns2 = ax2.plot(np.arange(1000), fig_accuracy, 'r', label="Accuracy")
ax1.set_xlabel('iteration')
ax1.set_ylabel('training loss')
ax2.set_ylabel('training accuracy')
# 合并图例
lns = lns1 + lns2
labels = ["Loss", "Accuracy"]
# labels = [l.get_label() for l in lns]
plt.legend(lns, labels, loc=7)

以上这篇TensorFlow绘制loss/accuracy曲线的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python Tensor FLow简单使用方法实例详解

    本文实例讲述了Python Tensor FLow简单使用方法.分享给大家供大家参考,具体如下: 1.基础概念 Tensor表示张量,是一种多维数组的数据结构.Flow代表流,是指张量之间通过计算而转换的过程.TensorFLow通过一个计算图的形式表示编程过程,数据在每个节点之间流动,经过节点加工之后流向下一个节点. 计算图是一个有向图,其组成如下:节点:代表一个操作.边:代表节点之间的数据传递和控制依赖,其中实线代表两个节点之间的数据传递关系,虚线代表两个节点之间存在控制相关. 张量是所有数

  • python 微信好友特征数据分析及可视化

    一.背景及研究现状 在我国互联网的发展过程中,PC互联网已日趋饱和,移动互联网却呈现井喷式发展.数据显示,截止2013年底,中国手机网民超过5亿,占比达81%.伴随着移动终端价格的下降及wifi的广泛铺设,移动网民呈现爆发趋势. 微信已经成为连接线上与线下.虚拟与现实.消费与产业的重要工具,它提高了O2O类营销用户的转化率.过去开发软件,程序员常要考虑不同开发环境的语言.设备的适配性和成本.现在,开发者可以在一个"类操作底层"去开发应用,打破了过去受限的开发环境. 二.研究意义及目的

  • 使用tensorboard可视化loss和acc的实例

    1.用try...except...避免因版本不同出现导入错误问题 try: image_summary = tf.image_summary scalar_summary = tf.scalar_summary histogram_summary = tf.histogram_summary merge_summary = tf.merge_summary SummaryWriter = tf.train.SummaryWriter except: image_summary = tf.sum

  • TensorFlow绘制loss/accuracy曲线的实例

    1. 多曲线 1.1 使用pyplot方式 import numpy as np import matplotlib.pyplot as plt x = np.arange(1, 11, 1) plt.plot(x, x * 2, label="First") plt.plot(x, x * 3, label="Second") plt.plot(x, x * 4, label="Third") plt.legend(loc=0, ncol=1)

  • JavaScript使用atan2来绘制箭头和曲线的实例

    最近搞Canvas绘图,知道了JavaScript中提供了atan2(y,x)这样一个三角函数.乍眼一看,不认识,毕竟在高中时,学过的三角函数有:sin,cos,arcsin,arccos,tan,arctan等,并没有这个.而工作中又需要用到它,所以这里就做了个简单的了解. 在坐标系中理解tan 和 atan 回顾一下三角函数tan: tanθ,用三角函数来表示时,它的值等于sinθ/cosθ,如果将其放到坐标系中,它的的值等价于:dy/dx.在坐标系中,任意两个点所组成的直线,相对于x轴的斜

  • python一绘制元二次方程曲线的实例分析

    说明 1.Matplotlib函数可以绘制图形,使用plot函数绘制曲线. 2.需要将200个点的x坐标和Y坐标分别以序列的形式输入plot函数,然后调用show函数来显示图形. 实例 import matplotlib.pyplot as plt #200个点的x坐标 x=range(-100,100) #生成y点的坐标 y=[i**2 for i in x ] #绘制一元二次曲线 plt.plot(x,y) #调用savefig将一元二次曲线保存为result.jpg plt.savefig

  • caffe的python接口绘制loss和accuracy曲线

    目录 引言 anaconda库 python接口实现 引言 使用python接口来运行caffe程序,主要的原因是python非常容易可视化.所以不推荐大家在命令行下面运行python程序.如果非要在命令行下面运行,还不如直接用 c++算了. 推荐使用jupyter notebook,spyder等工具来运行python代码,这样才和它的可视化完美结合起来. anaconda库 因为我是用anaconda来安装一系列python第三方库的,所以我使用的是spyder,与matlab界面类似的一款

  • 详解如何利用Python绘制科赫曲线

    目录 1. 递归 1.1 定义 1.2 数学归纳法 2. 递归的使用方法 2.1 阶乘 2.2 字符串反转 3. 科赫曲线的绘制 3.1 概要 3.2 绘制科赫曲线 3.3 科赫曲线的雪花效果 3.4 分形几何 1. 递归 1.1 定义 函数作为一种代码封装, 可以被其他程序调用,当然,也可以被函数内部代码调用.这种函数定义中调用函数自身的方式称为递归.就像一个人站在装满镜子的房间中,看到的影像就是递归的结果.递归在数学和计算机应用上非常强大,能够非常简洁地解决重要问题. 数学上有个经典的递归例

  • Python绘制loss曲线和准确率曲线实例代码

    目录 引言 一.数据读取与存储部分 二.绘制 loss 曲线 三.绘制准确率曲线 总结 引言 使用 python 绘制网络训练过程中的的 loss 曲线以及准确率变化曲线,这里的主要思想就时先把想要的损失值以及准确率值保存下来,保存到 .txt 文件中,待网络训练结束,我们再拿这存储的数据绘制各种曲线. 其大致步骤为:数据读取与存储 - > loss曲线绘制 - > 准确率曲线绘制 一.数据读取与存储部分 我们首先要得到训练时的数据,以损失值为例,网络每迭代一次都会产生相应的 loss,那么我

  • 在tensorflow下利用plt画论文中loss,acc等曲线图实例

    直接上代码: fig_loss = np.zeros([n_epoch]) fig_acc1 = np.zeros([n_epoch]) fig_acc2= np.zeros([n_epoch]) for epoch in range(n_epoch): start_time = time.time() #training train_loss, train_acc, n_batch = 0, 0, 0 for x_train_a, y_train_a in minibatches(x_trai

  • 用R语言绘制ROC曲线的实例讲解

    1 roc曲线的意义 ROC曲线就是用来判断诊断的正确性,最理想的就是曲线下的面积为1,比较理想的状态就是曲线下的面积在0.8-0.9之间,0.5的话对实验结果没有什么影响. 如图: 2代码部分 install.packages("pROC") install.packages("ggplot2") library(pROC) library(ggplot2) #建立曲线 data(aSAH) rocobj1<-roc(aSAHo u t c o m e ,

  • keras 自定义loss层+接受输入实例

    loss函数如何接受输入值 keras封装的比较厉害,官网给的例子写的云里雾里, 在stackoverflow找到了答案 You can wrap the loss function as a inner function and pass your input tensor to it (as commonly done when passing additional arguments to the loss function). def custom_loss_wrapper(input_

  • C#画笔Pen绘制光滑模式曲线的方法

    本文实例讲述了C#画笔Pen绘制光滑模式曲线的方法.分享给大家供大家参考.具体实现方法如下: using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; using System.Drawing; using System.Text; using System.Windows.Forms; using System.Drawing.Drawing2D; namesp

随机推荐