Python数据可视化Pyecharts库实现桑葚图效果

目录
  • 基本思路我总结大概有三步:
    • 1. 先申明使用sankey
    • 2. 使用add 添加对sankey图的配置信息
    • 3. 最后render生成html文件展示

首先介绍一下什么是桑葚图?

桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图。

它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源、材料成分、金融等数据的可视化分析。

因1898年Matthew Henry Phineas Riall Sankey绘制的“蒸汽机的能源效率图”而闻名,此后便以其名字命名为“桑基图”。

抓住桑葚图的核心定义,是主要用语表现一个数据流的过程。其实,我们熟悉的Matplotlib中也可以画出桑葚图,可是看起来是不是有那么一点点丑? 如下所示:

本篇使用另外一个常用的可视化库pyecharts来画图。

这里需要强调一下,pyecharts 分为v0.5.x 和 v1 两个大版本,并且两个版本是不兼容的。v 0.5.x 支持python2.7 和 3.4+ ,而v1 开始仅支持python 3.6+ ,在官方也分为两个不同的文档。

在网上对于v1 的资料和学习例子也非常多,本文就为还在使用v 0.5.x版本的同学,提供帮助。本篇之后的例子,使用v 0.5.x版本。官方文档

首先使用熟悉的pip进行安装

pip install pyecharts

然后我们可以对照着官方文档中的API介绍来学习,需要引入 Sankey。

核心参数不同,主要是对桑葚图的一些展示的配置。

基本思路我总结大概有三步:

1. 先申明使用sankey

sankey = Sankey("桑基图示例", width=1200, height=600)

2. 使用add 添加对sankey图的配置信息

sankey.add(
    "sankey",
    nodes=j["nodes"],
    links=j["links"],
    line_opacity=0.2,
    line_curve=0.5,
    line_color="source",
    is_label_show=True,
    label_pos="right",
)

这里需要注意,nodes和links是必须参数,相当于桑葚图中的结点和连接的边。需要传入一个List数据,内嵌字典数据格式,如下所示。这里的name、source、target和value都是固定的。

nodes = [
    {'name': 'category1'}, {'name': 'category2'}, {'name': 'category3'},
    {'name': 'category4'}, {'name': 'category5'}, {'name': 'category6'},
]

links = [
    {'source': 'category1', 'target': 'category2', 'value': 10},
    {'source': 'category2', 'target': 'category3', 'value': 15},
    {'source': 'category3', 'target': 'category4', 'value': 20},
    {'source': 'category5', 'target': 'category6', 'value': 25}
]

3. 最后render生成html文件展示

sankey.render()

最后给大家分享一个小例子:

def sankey_analysis():
    nodes = [{'name':'Cluster 1'}, {'name':'Cluster 2'},{'name':'Cluster 3'},
{'name':'Young'},{'name':'Medium'},{'name':'Elder'}]

    result = np.array([
                   [130,151,188],
                   [735,462,670],
                   [711,625,881]])

    targets = ['Young', 'Medium', 'Elder']
    links = []

    for i in range(0,3):
        for j in range(0,3):
            sub_dict ={}
            sub_dict['source'] = 'Cluster '+str(i+1)
            sub_dict['target'] = targets[j]
            sub_dict['value'] = result[i,j]
            links.append(sub_dict)

    pic = (Sankey(name, width=1200, height=600).add('', nodes, links,
    sankey_node_width=80,
    sankey_node_gap=5,
    line_opacity=0.7,
    line_curve=0.5,
    line_color='source',
    is_label_show=True,
    is_random = True,
    label_text_size=14,
    label_pos="inside"))
    pic.render('sankey.html')

参考资料:

1. https://05x-docs.pyecharts.org/#/zh-cn/prepare

以上就是Python数据可视化Pyecharts库实现桑葚图效果的详细内容,更多关于Pyecharts库实现桑葚图的资料请关注我们其它相关文章!

(0)

相关推荐

  • python pyecharts 实现一个文件绘制多张图

    Grid并行显示多张图 注意: 第一个图需为 有 x/y 轴的图,即不能为 Pie,其他位置顺序任意 from pyecharts import Bar, Line, Scatter, EffectScatter, Grid ''' Grid类:并行显示多个图表 TODO 第一个图需为 有 x/y 轴的图,即不能为 Pie,其他位置顺序任意. ''' attr = ["衬衫", "羊毛衫", "雪纺衫", "裤子", &quo

  • Python数据可视化 pyecharts实现各种统计图表过程详解

    1.pyecharts介绍 Echarts是一款由百度公司开发的开源数据可视化JS库,pyecharts是一款使用python调用echarts生成数据可视化的类库,可实现柱状图,折线图,饼状图,地图等统计图表. 2.柱状图 适用场合是二维数据集(每个数据点包括两个值x和y),但只有一个维度需要比较,用于显示一段时间内的数据变化或显示各项之间的比较情况. 优点: 利用柱子的高度,反映数据的差异,肉眼对高度差异很敏感. 缺点: 只适用中小规模的数据集. 柱状图最基本用法 from pyechart

  • python使用pyecharts库画地图数据可视化的实现

    python使用pyecharts库画地图数据可视化导库中国地图代码结果世界地图代码结果省级地图代码结果地级市地图代码结果 导库 from pyecharts import options as opts from pyecharts.charts import Map 中国地图 代码 data = [('湖北', 9074),('浙江', 661),('广东', 632),('河南', 493),('湖南', 463), ('安徽', 340),('江西', 333),('重庆', 275),

  • python的pyecharts绘制各种图表详细(附代码)

    环境:pyecharts库,echarts-countries-pypkg,echarts-china-provinces-pypkg,echarts-china-cities-pypkg 数据:2018年4月16号的全国各地最高最低和天气类型的数据--2018-4-16.json(爬虫爬的) 代码:天气数据爬虫代码,图表绘制代码 代码地址:https://github.com/goodloving/pyecharts.git(py文件) 一.公共属性 1.标题栏的属性:一般在实例化(初始化)类

  • Python数据可视化Pyecharts库实现桑葚图效果

    目录 基本思路我总结大概有三步: 1. 先申明使用sankey 2. 使用add 添加对sankey图的配置信息 3. 最后render生成html文件展示 首先介绍一下什么是桑葚图? 桑基图(Sankey diagram),即桑基能量分流图,也叫桑基能量平衡图. 它是一种特定类型的流程图,图中延伸的分支的宽度对应数据流量的大小,通常应用于能源.材料成分.金融等数据的可视化分析. 因1898年Matthew Henry Phineas Riall Sankey绘制的"蒸汽机的能源效率图"

  • Python数据可视化Pyecharts库的使用教程

    目录 一.Pyecharts 概述 1.1 Pyecharts 特性 1.2 Pyecharts 入门案例 二.Pyecharts 配置项 2.1 全局配置项 2.2 系列配置项 三.Pyecharts 的总结 一.Pyecharts 概述 Pyechart 是一个用于生成 Echarts 图表(Echarts 是基于 Javascript 的开源可视化图表库)的 Python 第三方库. 1.1 Pyecharts 特性 根据官方文档的介绍,Pyecharts 的特性如下: 1.简洁的 API

  • python数据可视化Pyecharts库sankey修改桑葚图颜色

    目录 在上一篇关于绘画Sankey桑葚图的文章里,已经介绍过大致的过程,本文主要解决如何自定义/修改 所想要的颜色, 如下所示一个桑葚图: 想要修改Phenotype1, 使用itemStyle中的属性color,给每个结点添加一个字典属性,设置所需要的颜色即可. nodes = [{'name':'Phenotype 1','itemStyle':{'color':"#FA8072"}}, {'name':'Phenotype 2','itemStyle':{'color':&quo

  • Python数据可视化处理库PyEcharts柱状图,饼图,线性图,词云图常用实例详解

    python可以在处理各种数据时,如果可以将这些数据,利用图表将其可视化,这样在分析处理起来,将更加直观.清晰,以下是 利用 PyEcharts 常用图表的可视化Demo, 开发环境 python3 柱状图 基本柱状图 from pyecharts import Bar # 基本柱状图 bar = Bar("基本柱状图", "副标题") bar.use_theme('dark') # 暗黑色主题 bar.add('真实成本', # label ["1月&q

  • Python 数据可视化超详细讲解折线图的实现

    绘制简单的折线图 在使用matplotlib绘制简单的折线图之前首先需要安装matplotlib,直接在pycharm终端pip install matplotlib即可 使用matplotlib绘制简单的折线图,再对其进行定制,实现数据的可视化操作 import matplotlib.pyplot as plt # 导入pyplot模块并设置别名为plt squares = [1, 4, 9, 16, 25] plt.plot(squares) plt.show() # 打开matplotib

  • Python数据可视化Pyecharts制作Heatmap热力图

    目录 HeatMap:热力图 1.基本设置 2.热力图数据项 Demo 举例 1.基础热力图 本文介绍基于 Python3 的 Pyecharts 制作 Heatmap(热力图 时需要使用的设置参数和常用模板案例,可根据实际情况对案例中的内容进行调整即可. 使用 Pyecharts 进行数据可视化时可提供直观.交互丰富.可高度个性化定制的数据可视化图表.案例中的代码内容基于 Pyecharts 1.x 版本 . HeatMap:热力图 1.基本设置 class HeatMap( # 初始化配置项

  • Python 数据可视化pyecharts的使用详解

    什么是pyecharts? pyecharts 是一个用于生成 Echarts 图表的类库. echarts是百度开源的一个数据可视化 JS 库,主要用于数据可视化.pyecharts 是一个用于生成 Echarts 图表的类库.实际上就是 Echarts 与 Python 的对接. 使用 pyecharts可以生成独立的网页,也可以在 flask , Django中集成使用. pyecharts包含的图表 Bar(柱状图/条形图) Bar3D(3D 柱状图) Boxplot(箱形图) Effe

  • python数据可视化plt库实例详解

    先看下jupyter和pycharm环境的差别 左边是jupyter----------------------------------------------------------右边是pycharm 以下都是使用pycharm环境 1.一个窗口画出一个线性方程 import numpy as np import matplotlib.pyplot as plt x = np.linspace(0,1,11)# 从0到1,个数为11的等差数列 print(x) y = 2*x plt.plo

  • Python数据可视化实现漏斗图过程图解

    项目实现知识点: Pandas库及pyecharts库 Pandas:数据分析和处理工具. pd.read_csv():读取csv文件. pyecharts:绘图库,提供30多种图标,超过400个以上的地图文件,支持原生百度地图,为地理数据可视化提供支持. pyecharts.charts:提供了基本的图表,例如条形图.直方图等. Python数据可视化:漏斗图的制作 项目实现过程: 1.导入模块 2.打开文件 3.读取数据 4.整理数据 5.创建漏斗图 6.添加组件 7.显示漏斗并设置名称 8

随机推荐