Python利用numpy实现三层神经网络的示例代码

本文主要介绍了Python利用numpy实现三层神经网络的示例代码,分享给大家,具体如下:

其实神经网络很好实现,稍微有点基础的基本都可以实现出来.主要都是利用上面这个公式来做的。

这是神经网络的整体框架,一共是三层,分为输入层,隐藏层,输出层。现在我们先来讲解下从输出层到到第一个隐藏层。

使用的编译器是jupyter notebook

import numpy as np

#定义X,W1,B1
X = np.array([1.0, 0.5])
w1 = np.array([[0.1, 0.3, 0.5],[0.2, 0.4, 0.6]])
b1 = np.array([0.1, 0.2, 0.3])

#查看他们的形状
print(X.shape)
print(w1.shape)
print(b1.shape)

#求点积
np.dot(X,w1)

def sigmod(x):
    return 1/(1 + np.exp(-x))
Z1 = sigmod(A1)
Z1

#定义w2,b2
w2 = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])
b2 = np.array([0.1,0.2])

#查看他们的行状
print(w2.shape)
print(b2.shape)

A2 = np.dot(Z1,w2) + b2
A2

Z2 = sigmod(A2)
Z2

#定义恒等函数

def identity_function(x):
    return x

#定义w3,b3
w3 = np.array([[0.1,0.3],[0.2,0.4]])
b3 = np.array([0.1,0.2])

A3 = np.dot(Z2,w3) + b3
Y = identity_function(A3)
Y

将上面的整合一下

#整理

#定义一个字典,将权重全部放入字典
def init_network():
    network = {}
    network['w1'] = np.array([[0.1,0.3,0.5],[0.2,0.4,0.6]])
    network['w2'] = np.array([[0.1,0.4],[0.2,0.5],[0.3,0.6]])
    network['w3'] = np.array([[0.1,0.3],[0.2,0.4]])
    network['b1'] = np.array([0.1, 0.2, 0.3])
    network['b2'] = np.array([0.1,0.2])
    network['b3'] = np.array([0.1,0.2])
    return network
#定义函数,导入权重与x,得到Y

def forward(network,x):
    w1,w2,w3 = network['w1'],network['w2'],network['w3']
    b1,b2,b3 = network['b1'],network['b2'],network['b3']

    A1 = np.dot(x,w1) + b1
    A2 = np.dot(A1,w2) + b2
    A3 = np.dot(A2,w3) + b3
    Y = identity_function(A3)
    Y
#调用函数

network = init_network()
X = np.array([1.0,0.5])
Y = forward(network,X)

到此这篇关于Python利用numpy实现三层神经网络的示例代码的文章就介绍到这了,更多相关numpy三层神经网络内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • numpy实现神经网络反向传播算法的步骤

    一.任务 实现一个4 层的全连接网络实现二分类任务,网络输入节点数为2,隐藏层的节点数设计为:25,50,25,输出层2 个节点,分别表示属于类别1 的概率和类别2 的概率,如图所示.我们并没有采用Softmax 函数将网络输出概率值之和进行约束,而是直接利用均方差误差函数计算与One-hot 编码的真实标签之间的误差,所有的网络激活函数全部采用Sigmoid 函数,这些设计都是为了能直接利用梯度推导公式. 二.数据集 通过scikit-learn 库提供的便捷工具生成2000 个线性不可分的2

  • 纯用NumPy实现神经网络的示例代码

    摘要: 纯NumPy代码从头实现简单的神经网络. Keras.TensorFlow以及PyTorch都是高级别的深度学习框架,可用于快速构建复杂模型.前不久,我曾写过一篇文章,对神经网络是如何工作的进行了简单的讲解.该文章侧重于对神经网络中运用到的数学理论知识进行详解.本文将利用NumPy实现简单的神经网络,在实战中对其进行深层次剖析.最后,我们会利用分类问题对模型进行测试,并与Keras所构建的神经网络模型进行性能的比较. Note:源码可在我的GitHub中查看. 在正式开始之前,需要先对所

  • Numpy实现卷积神经网络(CNN)的示例

    import numpy as np import sys def conv_(img, conv_filter): filter_size = conv_filter.shape[1] result = np.zeros((img.shape)) # 循环遍历图像以应用卷积运算 for r in np.uint16(np.arange(filter_size/2.0, img.shape[0]-filter_size/2.0+1)): for c in np.uint16(np.arange(

  • Python使用numpy实现BP神经网络

    本文完全利用numpy实现一个简单的BP神经网络,由于是做regression而不是classification,因此在这里输出层选取的激励函数就是f(x)=x.BP神经网络的具体原理此处不再介绍. import numpy as np class NeuralNetwork(object): def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): # Set number of nodes in i

  • Python基于numpy灵活定义神经网络结构的方法

    本文实例讲述了Python基于numpy灵活定义神经网络结构的方法.分享给大家供大家参考,具体如下: 用numpy可以灵活定义神经网络结构,还可以应用numpy强大的矩阵运算功能! 一.用法 1). 定义一个三层神经网络: '''示例一''' nn = NeuralNetworks([3,4,2]) # 定义神经网络 nn.fit(X,y) # 拟合 print(nn.predict(X)) #预测 说明: 输入层节点数目:3 隐藏层节点数目:4 输出层节点数目:2 2).定义一个五层神经网络:

  • Python利用numpy实现三层神经网络的示例代码

    本文主要介绍了Python利用numpy实现三层神经网络的示例代码,分享给大家,具体如下: 其实神经网络很好实现,稍微有点基础的基本都可以实现出来.主要都是利用上面这个公式来做的. 这是神经网络的整体框架,一共是三层,分为输入层,隐藏层,输出层.现在我们先来讲解下从输出层到到第一个隐藏层. 使用的编译器是jupyter notebook import numpy as np #定义X,W1,B1 X = np.array([1.0, 0.5]) w1 = np.array([[0.1, 0.3,

  • python利用MethodType绑定方法到类示例代码

    前言 本文主要给大家介绍了关于python用MethodType绑定方法到类的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍: 对python中MethodType不熟悉的朋友们可以先看看这篇文章 问题引出 先看下面一段代码: from types import MethodType def set_age(self,age): self.age=age class Stu(object): pass Stu.set_age=MethodType(set_age,Stu)

  • Python实现一个简单三层神经网络的搭建及测试 代码解析

    目录 1.初始化 2.预测 3.训练 4.测试 废话不多说了,直接步入正题,一个完整的神经网络一般由三层构成:输入层,隐藏层(可以有多层)和输出层.本文所构建的神经网络隐藏层只有一层.一个神经网络主要由三部分构成(代码结构上):初始化,训练,和预测.首先我们先来初始化这个神经网络吧! 1.初始化 我们所要初始化的内容包括:神经网络每层上的神经元个数(这个是根据实际问题输入输出而得到的,我们将它设置为一个可自定义量). 不同层间数据互相传送的权重值. 激活函数(模拟自然界的神经元,刺激信号需要达到

  • python利用numpy存取文件的方式

    NumPy提供了多种存取数组内容的文件操作函数.保存数组数据的文件可以是二进制格式或者文本格式.二进制格式的文件又分为NumPy专用的格式化二进制类型和无格式类型. numpy格式的文件可以保存为后缀为(.npy/.npz)格式的文件 1. tofile()和fromfile() tofile()将数组中的数据以二进制格式写进文件 tofile()输出的数据不保存数组形状和元素类型等信息 fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改 import nump

  • python使用numpy实现直方图反向投影示例

    最近跟着OpenCV2-Python-Tutorials在学习python_opencv中直方图的反向投影时,第一种方法是使用numpy实现将图中的红色玫瑰分割出来,教程给的代码缺了一句函数,导致实现不出来. 自己加上了后(也不知到这样加对不对)代码和效果如下: 代码: import cv2 import numpy as np roi = cv2.imread('./data/rose_red.jpg') hsv = cv2.cvtColor(roi,cv2.COLOR_BGR2HSV) #t

  • python利用paramiko实现交换机巡检的示例

    直接上代码 #-*- coding:UTF-8 -*- import paramiko import time starttime = time.strftime('%Y-%m-%d %T') start_info = "巡检开始时间:"+str(starttime) cmd_filepath = r"d:\Python\py\xunjian\cmd.txt" cmd_file = open(cmd_filepath,"r") cmds = cm

  • python利用numpy存取文件案例教程

         NumPy提供了多种存取数组内容的文件操作函数.保存数组数据的文件可以是二进制格式或者文本格式.二进制格式的文件又分为NumPy专用的格式化二进制类型和无格式类型. numpy格式的文件可以保存为后缀为(.npy/.npz)格式的文件 1. tofile()和fromfile() tofile()将数组中的数据以二进制格式写进文件 tofile()输出的数据不保存数组形状和元素类型等信息 fromfile()函数读回数据时需要用户指定元素类型,并对数组的形状进行适当的修改 import

  • Python K-means实现简单图像聚类的示例代码

    这里直接给出第一个版本的直接实现: import os import numpy as np from sklearn.cluster import KMeans import cv2 from imutils import build_montages import matplotlib.image as imgplt image_path = [] all_images = [] images = os.listdir('./images') for image_name in images

  • Python实现图像去雾效果的示例代码

    目录 修改部分 训练测试 数据集 下载地址 修改部分 我利用该代码进行了去雾任务,并对原始代码进行了增删,去掉了人脸提取并对提取人脸美化的部分,如下图 增改了一些数据处理代码,Create_Bigfile2.py和Load_Bigfilev2为特定任务需要加的代码,这里数据处理用的是原始方法,即将训练数据打包成一个文件,一次性载入,可能会内存爆炸.去雾的如下 另外,为了节省内存,可以不使用原始方法,我改写了online_dataset_for_odl_photos.py文件 用于我的加雾论文,此

随机推荐