golang简易令牌桶算法实现代码

基本思路:定义一个chan,chan大小为需要限制的qps大小,go一个协程启动tick,每1000/qps时间在tick中写入数值,启动另一个协程,读取chan中的值,如果读取到chan中有值,则向下层接口发送请求。

代码如下:

package main

import (
    "fmt"
    "time"
    "httpclient"
)

var LEN int = 10

func tickStoreCh(arrlen int, ch chan int) {
    len := 1000/arrlen
    fmt.Println(len)
    tickTime := time.NewTicker(time.Duration(len)*time.Millisecond)
    var i int
    for {
        fmt.Println(len)
        i++
        <-tickTime.C
        ch<- i
    }
}

func OrganReq(org string, qps int) {
    ch := make(chan int, qps)
    go tickStoreCh(qps, ch)
    time.Sleep(1000*time.Millisecond)
    for {
        //收客户请求,发送http请求给RE
        client := httpclient.NewHttpClient(time.Duration(1000)*time.Millisecond, time.Duration(2000)*time.Millisecond)
        header := make(map[string]string)
        header["Content-Type"] = "application/json;charset=utf-8"
        code, err := client.ResponseCode("http://127.0.0.1:19988", header, "llltest")
        value := <- ch
        fmt.Println(code, value, err, "lenchan:", len(ch))
        //time.Sleep(time.Second)
    }
}

到此这篇关于golang简易令牌桶算法实现代码的文章就介绍到这了,更多相关golang 令牌桶算法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • php使用lua+redis实现限流,计数器模式,令牌桶模式

    lua 优点 减少网络开销: 不使用 Lua 的代码需要向 Redis 发送多次请求, 而脚本只需一次即可, 减少网络传输; 原子操作: Redis 将整个脚本作为一个原子执行, 无需担心并发, 也就无需事务; 复用: 脚本会永久保存 Redis 中, 其他客户端可继续使用. 计数器模式: 利用lua脚本一次性完成处理达到原子性,通过INCR自增计数,判断是否达到限定值,达到限定值则返回限流,添加key过期时间应该范围过度 $lua = ' local i = redis.call("INCR&

  • 15行Python代码带你轻松理解令牌桶算法

    在网络中传输数据时,为了防止网络拥塞,需限制流出网络的流量,使流量以比较均匀的速度向外发送,令牌桶算法就实现了这个功能, 可控制发送到网络上数据的数目,并允许突发数据的发送. 什么是令牌 从名字上看令牌桶,大概就是一个装有令牌的桶吧,那么什么是令牌呢? 紫薇格格拿的令箭,可以发号施令,令行禁止.在计算机的世界中,令牌也有令行禁止的意思,有令牌,则相当于得到了进行操作的授权,没有令牌,就什么都不能做. 用令牌实现限速器 我们用1块令牌来代表发送1字节数据的资格,假设我们源源不断的发放令牌给程序,程

  • ASP.NET Core中使用令牌桶限流的实现

    在限流时一般会限制每秒或每分钟的请求数,简单点一般会采用计数器算法,这种算法实现相对简单,也很高效,但是无法应对瞬时的突发流量. 比如限流每秒100次请求,绝大多数的时间里都不会超过这个数,但是偶尔某一秒钟会达到120次请求,接着很快又会恢复正常,假设这种突发的流量不会对系统稳定性带来实质性的影响,则可以在一定程度上允许这种瞬时的突发流量,从而为用户带来更好的可用性体验.这就是令牌桶算法的用武之地. 该算法的基本原理是:有一个令牌桶,容量是X,每Y单位时间会向桶中放入Z个令牌,如果桶中的令牌数超

  • golang简易令牌桶算法实现代码

    基本思路:定义一个chan,chan大小为需要限制的qps大小,go一个协程启动tick,每1000/qps时间在tick中写入数值,启动另一个协程,读取chan中的值,如果读取到chan中有值,则向下层接口发送请求. 代码如下: package main import ( "fmt" "time" "httpclient" ) var LEN int = 10 func tickStoreCh(arrlen int, ch chan int)

  • Golang模拟令牌桶进行对访问的限流方式

    利用channel进行模拟令牌桶对访问进行限流 func FW(max int,duration time.Duration){ //定义一个channel ,进行初始化 contain := make(chan bool , max) for i := 0 ; i < max ; i ++{ contain <- true//写入channel } go func() {//开启一个线程 for { contain <- true time.Sleep(duration) } }()

  • golang高并发系统限流策略漏桶和令牌桶算法源码剖析

    目录 前言 漏桶算法 样例 源码实现 令牌桶算法 样例 源码剖析 Limit类型 Limiter结构体 Reservation结构体 Limiter消费token limiter归还Token 总结 前言 今天与大家聊一聊高并发系统中的限流技术,限流又称为流量控制,是指限制到达系统的并发请求数,当达到限制条件则可以拒绝请求,可以起到保护下游服务,防止服务过载等作用.常用的限流策略有漏桶算法.令牌桶算法.滑动窗口:下文主要与大家一起分析一下漏桶算法和令牌桶算法,滑动窗口就不在这里这介绍了.好啦,废

  • 使用Redis实现令牌桶算法原理解析

    在限流算法中有一种令牌桶算法,该算法可以应对短暂的突发流量,这对于现实环境中流量不怎么均匀的情况特别有用,不会频繁的触发限流,对调用方比较友好. 例如,当前限制10qps,大多数情况下不会超过此数量,但偶尔会达到30qps,然后很快就会恢复正常,假设这种突发流量不会对系统稳定性产生影响,我们可以在一定程度上允许这种瞬时突发流量,从而为用户带来更好的可用性体验.这就是使用令牌桶算法的地方. 令牌桶算法原理 如下图所示,该算法的基本原理是:有一个容量为X的令牌桶,每Y单位时间内将Z个令牌放入该桶.如

  • springboot+redis 实现分布式限流令牌桶的示例代码

    1.前言 网上找了很多redis分布式限流方案,要不就是太大,需要引入第三方jar,而且还无法正常运行,要不就是定时任务定时往key中放入数据,使用的时候调用,严重影响性能,所以着手自定义实现redis令牌桶. 只用到了spring-boot-starter-data-redis包,并且就几行代码. 2.环境准备 a.idea新建springboot项目,引入spring-data-redis包 b.编写令牌桶实现方法RedisLimitExcutor c.测试功能,创建全局拦截器,测试功能 3

  • 浅析Spring Cloud Gateway中的令牌桶限流算法

    目录 前言 回顾限流算法 计数器/时间窗口法 漏桶法 令牌桶法 主要逻辑分析 前言 在一个分布式高并发的系统设计中,限流是一个不可忽视的功能点.如果不对系统进行有效的流量访问限制,在双十一和抢票这种流量洪峰的场景下,很容易就会把我们的系统打垮.而作为系统服务的卫兵的网关组件,作为系统服务的统一入口,更需要考虑流量的限制,直接在网关层阻断流量比在各个系统中实现更合适.Spring Cloud Gateway的实现中,就提供了限流的功能,下面主要分析下Spring Cloud Gateway中是如何

  • 解决ASP.NET Core中使用漏桶算法限流的问题

    目录 算法原理 算法实现 进程内即内存漏桶算法 基于Redis的漏桶算法 应用算法 1.安装Nuget包 2.使用中间件 漏桶算法是限流的四大主流算法之一,其应用场景各种资料中介绍的不多,一般都是说应用在网络流量控制中.这里举两个例子: 1.目前家庭上网都会限制一个固定的带宽,比如100M.200M等,一栋楼有很多的用户,那么运营商怎么保证某些用户没有使用过多的带宽,从而影响到别人呢?这时就可以使用漏桶算法,限制每个用户访问网络的最大带宽,当然实际会比这复杂很多. 2.有一个祖传接口,当时写的时

  • Golang实现常见排序算法的示例代码

    目录 前言 五种基础排序算法对比 1.冒泡排序 2.选择排序 3.插入排序 4.快速排序 前言 现在的面试真的是越来越卷了,算法已经成为了面试过程中必不可少的一个环节,你如果想进稍微好一点的公司,「算法是必不可少的一个环节」.那么如何学习算法呢?很多同学的第一反应肯定是去letcode上刷题,首先我并不反对刷题的方式,但是对于一个没有专门学习过算法的同学来说,刷题大部分是没什么思路的,花一个多小时暴力破解一道题意义也不大,事后看看别人比较好的解法大概率也记不住,所以我觉得「专门针对算法进行一些简

随机推荐