Python内建类型str源码学习

目录
  • 引言
  • 1 Unicode
  • 2 Python中的Unicode
    • 2.1 Unicode对象的好处
    • 2.2 Python对Unicode的优化
  • 3 Unicode对象的底层结构体
    • 3.1 PyASCIIObject
    • 3.2 PyCompactUnicodeObject
    • 3.3 PyUnicodeObject
    • 3.4 示例
  • 4 interned机制
  • 5 总结

引言

“深入认识Python内建类型”这部分的内容会从源码角度为大家介绍Python中各种常用的内建类型。

在介绍常用类型str之前,在上一篇博客:Python源码学习笔记:深入认识Python内建类型——bytes已经为大家介绍了和str息息相关的bytes的源码知识。这篇博客回味大家分析str相关的源码。

1 Unicode

计算机存储的基本单位是字节,由8个比特位组成。由于英文只由26个字母加若干符号组成,因此英文字符可以直接用字节来保存。但是其他语言(例如中日韩等),由于字符众多,不得不使用多个字节来进行编码。

随着计算机技术的传播,非拉丁文字符编码技术不断发展,但是仍然存在两个比较大的局限性:

  • 不支持多语言:一种语言的编码方案不能用于另外一种语言
  • 没有统一标准:例如中文就有GBK、GB2312、GB18030等多种编码标准

由于编码方式不统一,开发人员就需要在不同编码之间来回转换,不可避免地会出现很多错误。为了解决这类不统一问题,Unicode标准被提出了。Unicode对世界上大部分文字系统进行整理、编码,让计算机可以用统一的方式处理文本。Unicode目前已经收录了超过14万个字符,天然地支持多语言。(Unicode的uni就是“统一”的词根)

2 Python中的Unicode

2.1 Unicode对象的好处

Python在3之后,str对象内部改用Unicode表示,因此在源码中成为Unicode对象。使用Unicode表示的好处是:程序核心逻辑统一使用Unicode,只需在输入、输出层进行解码、编码,可最大程度地避免各种编码问题。

图示如下:

2.2 Python对Unicode的优化

问题:由于Unicode收录字符已经超过14万个,每个字符至少需要4个字节来保存(这里应该是因为2个字节不够,所以才用4个字节,一般不会使用3个字节)。而英文字符用ASCII码表示仅需要1个字节,使用Unicode反而会使频繁使用的英文字符的开销变为原来的4倍。

首先我们来看一下Python中不同形式的str对象的大小差异:

>>> sys.getsizeof('ab') - sys.getsizeof('a')
1
>>> sys.getsizeof('一二') - sys.getsizeof('一')
2
>>> sys.getsizeof('') - sys.getsizeof('')
4

由此可见,Python内部对Unicode对象进行了优化:根据文本内容,选择底层存储单元。

Unicode对象底层存储根据文本字符的Unicode码位范围分成三类:

  • PyUnicode_1BYTE_KIND:所有字符码位在U+0000到U+00FF之间
  • PyUnicode_2BYTE_KIND:所有字符码位在U+0000到U+FFFF之间,且至少有一个字符的码位大于U+00FF
  • PyUnicode_1BYTE_KIND:所有字符码位在U+0000到U+10FFFF之间,且至少有一个字符的码位大于U+FFFF

对应枚举如下:

enum PyUnicode_Kind {
/* String contains only wstr byte characters.  This is only possible
   when the string was created with a legacy API and _PyUnicode_Ready()
   has not been called yet.  */
    PyUnicode_WCHAR_KIND = 0,
/* Return values of the PyUnicode_KIND() macro: */
    PyUnicode_1BYTE_KIND = 1,
    PyUnicode_2BYTE_KIND = 2,
    PyUnicode_4BYTE_KIND = 4
};

根据不同的分类,选择不同的存储单元:

/* Py_UCS4 and Py_UCS2 are typedefs for the respective
   unicode representations. */
typedef uint32_t Py_UCS4;
typedef uint16_t Py_UCS2;
typedef uint8_t Py_UCS1;

对应关系如下:

文本类型 字符存储单元 字符存储单元大小(字节)
PyUnicode_1BYTE_KIND Py_UCS1 1
PyUnicode_2BYTE_KIND Py_UCS2 2
PyUnicode_4BYTE_KIND Py_UCS4 4

由于Unicode内部存储结构因文本类型而异,因此类型kind必须作为Unicode对象公共字段进行保存。Python内部定义了一些标志位,作为Unicode公共字段:(介于笔者水平有限,这里的字段在后续内容中不会全部介绍,大家后续可以自行了解。抱拳~)

  • interned:是否为interned机制维护
  • kind:类型,用于区分字符底层存储单元大小
  • compact:内存分配方式,对象与文本缓冲区是否分离
  • asscii:文本是否均为纯ASCII

通过PyUnicode_New函数,根据文本字符数size以及最大字符maxchar初始化Unicode对象。该函数主要是根据maxchar为Unicode对象选择最紧凑的字符存储单元以及底层结构体:(源码比较长,这里就不列出了,大家可以自行了解,下面以表格形式展现)

  maxchar < 128 128 <= maxchar < 256 256 <= maxchar < 65536 65536 <= maxchar < MAX_UNICODE
kind PyUnicode_1BYTE_KIND PyUnicode_1BYTE_KIND PyUnicode_2BYTE_KIND PyUnicode_4BYTE_KIND
ascii 1 0 0 0
字符存储单元大小(字节) 1 1 2 4
底层结构体 PyASCIIObject PyCompactUnicodeObject PyCompactUnicodeObject PyCompactUnicodeObject

3 Unicode对象的底层结构体

3.1 PyASCIIObject

C源码:

typedef struct {
    PyObject_HEAD
    Py_ssize_t length;          /* Number of code points in the string */
    Py_hash_t hash;             /* Hash value; -1 if not set */
    struct {
        unsigned int interned:2;
        unsigned int kind:3;
        unsigned int compact:1;
        unsigned int ascii:1;
        unsigned int ready:1;
        unsigned int :24;
    } state;
    wchar_t *wstr;              /* wchar_t representation (null-terminated) */
} PyASCIIObject;

源码分析:

length:文本长度

hash:文本哈希值

state:Unicode对象标志位

wstr:缓存C字符串的一个wchar_t指针,以“\0”结束(这里和我看的另一篇文章讲得不太一样,另一个描述是:ASCII文本紧接着位于PyASCIIObject结构体后面,我个人觉得现在的这种说法比较准确,毕竟源码结构体后面没有别的字段了)

图示如下:

(注意这里state字段后面有一个4字节大小的空洞,这是结构体字段内存对齐造成的现象,主要是为了优化内存访问效率)

ASCII文本由wstr指向,以’abc’和空字符串对象’'为例:

3.2 PyCompactUnicodeObject

如果文本不全是ASCII,Unicode对象底层便由PyCompactUnicodeObject结构体保存。C源码如下:

/* Non-ASCII strings allocated through PyUnicode_New use the
   PyCompactUnicodeObject structure. state.compact is set, and the data
   immediately follow the structure. */
typedef struct {
    PyASCIIObject _base;
    Py_ssize_t utf8_length;     /* Number of bytes in utf8, excluding the
                                 * terminating \0. */
    char *utf8;                 /* UTF-8 representation (null-terminated) */
    Py_ssize_t wstr_length;     /* Number of code points in wstr, possible
                                 * surrogates count as two code points. */
} PyCompactUnicodeObject;

PyCompactUnicodeObject在PyASCIIObject的基础上增加了3个字段:

utf8_length:文本UTF8编码长度

utf8:文本UTF8编码形式,缓存以避免重复编码运算

wstr_length:wstr的“长度”(这里所谓的长度没有找到很准确的说法,笔者也不太清楚怎么能打印出来,大家可以自行研究下)

注意到,PyASCIIObject中并没有保存UTF8编码形式,这是因为ASCII本身就是合法的UTF8,这也是ASCII文本底层由PyASCIIObject保存的原因。

结构图示:

3.3 PyUnicodeObject

PyUnicodeObject则是Python中str对象的具体实现。C源码如下:

/* Strings allocated through PyUnicode_FromUnicode(NULL, len) use the
   PyUnicodeObject structure. The actual string data is initially in the wstr
   block, and copied into the data block using _PyUnicode_Ready. */
typedef struct {
    PyCompactUnicodeObject _base;
    union {
        void *any;
        Py_UCS1 *latin1;
        Py_UCS2 *ucs2;
        Py_UCS4 *ucs4;
    } data;                     /* Canonical, smallest-form Unicode buffer */
} PyUnicodeObject;

3.4 示例

在日常开发时,要结合实际情况注意字符串拼接前后的内存大小差别:

>>> import sys
>>> text = 'a' * 1000
>>> sys.getsizeof(text)
1049
>>> text += ''
>>> sys.getsizeof(text)
4080

4 interned机制

如果str对象的interned标志位为1,Python虚拟机将为其开启interned机制,

源码如下:(相关信息在网上可以看到很多说法和解释,这里笔者能力有限,暂时没有找到最确切的答案,之后补充。抱拳~但是我们通过分析源码应该是能看出一些门道的)

/* This dictionary holds all interned unicode strings.  Note that references
   to strings in this dictionary are *not* counted in the string's ob_refcnt.
   When the interned string reaches a refcnt of 0 the string deallocation
   function will delete the reference from this dictionary.
   Another way to look at this is that to say that the actual reference
   count of a string is:  s->ob_refcnt + (s->state ? 2 : 0)
*/
static PyObject *interned = NULL;
void
PyUnicode_InternInPlace(PyObject **p)
{
    PyObject *s = *p;
    PyObject *t;
#ifdef Py_DEBUG
    assert(s != NULL);
    assert(_PyUnicode_CHECK(s));
#else
    if (s == NULL || !PyUnicode_Check(s))
        return;
#endif
    /* If it's a subclass, we don't really know what putting
       it in the interned dict might do. */
    if (!PyUnicode_CheckExact(s))
        return;
    if (PyUnicode_CHECK_INTERNED(s))
        return;
    if (interned == NULL) {
        interned = PyDict_New();
        if (interned == NULL) {
            PyErr_Clear(); /* Don't leave an exception */
            return;
        }
    }
    Py_ALLOW_RECURSION
    t = PyDict_SetDefault(interned, s, s);
    Py_END_ALLOW_RECURSION
    if (t == NULL) {
        PyErr_Clear();
        return;
    }
    if (t != s) {
        Py_INCREF(t);
        Py_SETREF(*p, t);
        return;
    }
    /* The two references in interned are not counted by refcnt.
       The deallocator will take care of this */
    Py_REFCNT(s) -= 2;
    _PyUnicode_STATE(s).interned = SSTATE_INTERNED_MORTAL;
}

可以看到,源码前面还是做一些基本的检查。我们可以看一下37行和50行:将s添加到interned字典中时,其实s同时是key和value(这里我不太清楚为什么会这样做),所以s对应的引用计数是+2了的(具体可以看PyDict_SetDefault()的源码),所以在50行时会将计数-2,保证引用计数的正确。

考虑下面的场景:

>>> class User:
    def __init__(self, name, age):
        self.name = name
        self.age = age
>>> user = User('Tom', 21)
>>> user.__dict__
{'name': 'Tom', 'age': 21}

由于对象的属性由dict保存,这意味着每个User对象都要保存一个str对象‘name’,这会浪费大量的内存。而str是不可变对象,因此Python内部将有潜在重复可能的字符串都做成单例模式,这就是interned机制。Python具体做法就是在内部维护一个全局dict对象,所有开启interned机制的str对象均保存在这里,后续需要使用的时候,先创建,如果判断已经维护了相同的字符串,就会将新创建的这个对象回收掉。

示例:

由不同运算生成’abc’,最后都是同一个对象:

>>> a = 'abc'
>>> b = 'ab' + 'c'
>>> id(a), id(b), a is b
(2752416949872, 2752416949872, True)

5 总结

个人反思:在写这篇博客时查阅了很多资料,看到了很多已有的但是不同的说法,在整理学习的时候感觉有些吃力,不过尽可能地没有直接输出不确切的观点,而是基于真正的源码来为大家分析。并且str的相关内容应该是目前为止内建类型中最多最杂的,后续会补充的list和dict的相关内容都比它要清晰明确,当然其中最大的问题肯定还是笔者的能力。博客中应该还是有错误和不足的地方,但尽量对源码部分的解释做到准确。目前笔者能力有限,今后进步之后再对该篇博客中错误和不足的地方进行修正补充。抱拳~

以上就是Python内建类型str源码学习的详细内容,更多关于Python内建类型str的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python内建类型int源码学习

    目录 1 int对象的设计 1.1 PyLongObject 1.2 整数的布局 1.3 小整数静态对象池 1.4 示例 2 大整数运算 2.1 整数运算概述 2.2 大整数运算处理过程 1.long_add()源码: 2.绝对值加法x_add() 3 其他 大整数转float溢出 “深入认识Python内建类型”这部分的内容会从源码角度为大家介绍Python中各种常用的内建类型. 问题:对于C语言,下面这个程序运行后的结果是什么?是1000000000000吗? #include <stdio

  • python基础入门详解(文件输入/输出 内建类型 字典操作使用方法)

    一.变量和表达式 复制代码 代码如下: >>> 1 + 1               2>>> print 'hello world' hello world>>> x = 1               >>> y = 2>>> x + y3 Python是强类型语言,无法根据上下文自动解析转换成合适的类型. Python是一种动态语言,在程序运行过程中,同一个变量名在运行的不同阶段可以代表不同形式的值(整型,浮

  • Python内建类型list源码学习

    目录 问题: 1 常用方法 小结: 题外话: 2 list的内部结构:PyListObject 3 尾部操作和头部操作 3.1 尾部操作 3.2 头部操作 4 浅拷贝和深拷贝 4.1 浅拷贝 4.2 深拷贝 4.3 直接赋值 4.4 小结 个人总结: TODO: 5 动态数组 5.1 容量调整 5.2 append() 5.3 insert() 5.4 pop() 5.5 remove() 6 一些问题 问题: “深入认识Python内建类型”这部分的内容会从源码角度为大家介绍Python中各种

  • Python内建类型bytes深入理解

    目录 引言 1 bytes和str之间的关系 2 bytes对象的结构:PyBytesObject 3 bytes对象的行为 3.1 PyBytes_Type 3.2 bytes_as_sequence 4 字符缓冲池 引言 “深入认识Python内建类型”这部分的内容会从源码角度为大家介绍Python中各种常用的内建类型. 在我们日常的开发中,str是很常用的一个内建类型,与之相关的我们比较少接触的就是bytes,这里先为大家介绍一下bytes相关的知识点,下一篇博客再详细介绍str的相关内容

  • Python内建类型float源码学习

    目录 1 回顾float的基础知识 1.1 PyFloatObject 1.2 PyFloat_Type 1.3 对象的创建 1.4 对象的销毁 1.5 小结 2 空闲对象缓存池 2.1 浮点对象的空闲链表 2.2 空闲链表的使用 3 其他 “深入认识Python内建类型”这部分的内容会从源码角度为大家介绍Python中各种常用的内建类型. 1 回顾float的基础知识 1.1 PyFloatObject 1.2 PyFloat_Type C源码(仅列出部分字段): PyTypeObject P

  • Python内建类型str源码学习

    目录 引言 1 Unicode 2 Python中的Unicode 2.1 Unicode对象的好处 2.2 Python对Unicode的优化 3 Unicode对象的底层结构体 3.1 PyASCIIObject 3.2 PyCompactUnicodeObject 3.3 PyUnicodeObject 3.4 示例 4 interned机制 5 总结 引言 “深入认识Python内建类型”这部分的内容会从源码角度为大家介绍Python中各种常用的内建类型. 在介绍常用类型str之前,在上

  • Python作用域与名字空间源码学习笔记

    目录 作用域与名字空间 1. 名字绑定 1.1 赋值 1.2 模块导入 1.3 函数.类定义 1.4 as关键字 2. 作用域 2.1 静态作用域 2.2 划分作用域 2.3 闭包作用域 2.4 类作用域 2.5 复杂嵌套 2.5.1 函数嵌套类 2.5.2 类嵌套类 3. 名字空间 3.1 Globals 3.2 Locals 3.3 Enclosings 3.4 Builtin 4. 问题与总结 作用域与名字空间 问题: PI = 3.14 def circle_area(r): retur

  • Python对象的底层实现源码学习

    目录 1. PyObject:对象的基石 2. PyVarObject:变长对象的基础 2.1 浮点对象 2.2 列表对象 3. PyTypeObject:类型的基石 4. PyType_Type:类型的类型 5. PyBaseObject_Type:类型之基 6. 补充 在“Python源码学习笔记:Python万物皆对象”中,我们对Python的对象类型体系有了一定的认识,这篇博客将从源码层面来介绍Python中万物皆对象的底层实现. 1. PyObject:对象的基石 在Python解释器

  • python内建类型与标准类型

    目录 前言 理解对象和类型 关于不可变类型和可变类型 关于动态静态强弱类型 标准类型 其它内建类型 类型的类型 None ->空类型 内建类型的布尔值 前言 全可以访问相同的对象, 因此我们讲 这种变量名也叫对象的 "引用". 验证1: a = 2 b = 3 print(id(a),id(b))  #140734889681584 140734889681616 b = 2 print(id(b))    #140734889681584 验证2: b = 3 print(id

  • Python对象的生命周期源码学习

    目录 思考: 1 C API 2 对象的创建 2.1 两种创建对象的方式 2.2 由类型对象创建实例对象 3 对象的多态性 4 对象的行为 5 引用计数 思考: 当我们输入这个语句的时候,Python内部是如何去创建这个对象的? a = 1.0 对象使用完毕,销毁的时机又是怎么确定的呢? 下面,我们以一个基本类型float为例,来分析对象从创建到销毁这整个生命周期中的行为. 1 C API Python是用C写的,对外提供了API,让用户可以从C环境中与其交互,并且Python内部也大量使用了这

  • Python中for循环可迭代对象迭代器及生成器源码学习

    目录 问题: 1. 迭代 1.1 可迭代对象Iterable 1.2 迭代器Iterator 1.3 for循环 1.3.1 iter()方法和next()方法 1.3.2 iter()和__iter__() 1.3.3 next()和__next__() 1.3.4 自定义类实现__iter__()和__next__() 1.3.5 探究for循环 2 生成器 2.1 获取生成器 2.2 next(生成器) 2.3 生成器和迭代器 2.4 生成器解析式 问题: 之前在学习list和dict相关

随机推荐