c++仿函数和函数适配器的使用详解

所谓的仿函数(functor),是通过重载()运算符模拟函数形为的类。  

因此,这里需要明确两点:  

1 仿函数不是函数,它是个类;  

2 仿函数重载了()运算符,使得它的对你可以像函数那样子调用(代码的形式好像是在调用函数)。  

for_each

这里的for循环语句有点冗余,想到了std::for_each ,为了使用for_each,我们需要定义一个函数,如下:

void print( State* pstate )
{
 pstate->print();
}

于是就可以简化为下面代码:

std::for_each( vect.begin(), vect.end(), &print );

STL大致分为六大模块:容器(container),算法(algorithm),迭代器(iterator),仿函数(functor),配接器(adapter),配置器(allocator)。其中仿函数是体积最小,观念最简单,但是在stl算法的搭配中起到了非常重要的作用,这是与简单的lambda或者指针函数所不同的。

在stl中提供了大量有用的仿函数,比如plus,minus,multiplies,divides,modulus,equal_to,not_equal_to,greater…很多很多,根据传入的参数的个数我们可以分为只需要接受一个参数的仿函数(unary_function)和需要接收两个参数的仿函数(binary_function)。

仿函数实现示例

//仿函数1,比较大小template<typename T> struct comp
{
 bool operator()(T in1, T in2) const
 {
  return (in1>in2);
 }
};comp<int> m_comp_objext;
cout << m_comp_objext(6, 3) << endl;  //使用对象调用
cout << comp<int>()(1, 2) << endl;  //使用仿函数实现

在上面的代码中,第一种调用方式是使用comp的定义的一个对象,然后通过这个对象来调用操作符(),来实现两个数组的比较的;对于第二个调用comp()(1, 2)是产生一个临时(无名的)对象。

2.2 仿函数详细说明

在下面的使用场景(统计一个容器中的符合规定的元素),将说明之前提到的函数指针为什么不能在STL中替换掉仿函数

bool my_count(int num)
{
 return (num < 5);
}int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
std::vector<int> v_a(a, a+10);
cout << "count: " << std::count_if(v_a.begin(), v_a.end(), my_count);

在上面我们传递进去了一个函数指针作为count_if的比较条件。但是现在根据新的需求,不再统计容器中小于5的变量个数,改为了8或者3。那么最直接的方法就是加一个参数threshold就可以了,就像下面这样

bool my_count(int num, int threshold)
{
 return (num < threshold));
}

但是这样的写法STL中是不能使用的,而且当容器中的元素类型发生变化的时候就不能使用了,更要命的是不能使用模板函数。

那么,既然多传递传递参数不能使用,那就把需要传递进来的那个参数设置为全局的变量,那样确实能够实现当前情况下对阈值条件的修改,但是修改起来存在隐患(要是没有初始化就调用怎么办)。因而解决这样问题的方式就是

方式就很好的兼容了STL。

template<typename T> struct my_count1
{
 my_count1(T a)
 {
  threshold = a;
 }
 T threshold;
 bool operator()(T num)
 {
  return (num < threshold);
 }
};int a[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9};
std::vector<int> v_a(a, a+10);cout << "count: " << std::count_if(v_a.begin(), v_a.end(), my_count1<int>(8));

1.仿函数当做排序准则

#include <iostream>
#include <string>
#include <set>
#include <algorithm>
using namespace std;class Person
{
public:
 Person(string a, string b) :
  strFirstname(a), strLastname(b)
 {}
public:
 string firstname() const
 {
  return strFirstname;
 }
 string lastname() const
 {
  return strLastname;
 }
private:
 const string strFirstname;
 const string strLastname;
};//仿函数实现自定义排序
class PersonSortCriterion
{
public:
 //仿函数
 //排序规则为:按照lastname升序排列,lastname相同时按firstname升序排列
 bool operator()(const Person &p1, const Person &p2)
 {
  return (p1.lastname() > p2.lastname() ||
   ((p2.lastname() <= p1.lastname()) &&
    p1.firstname() > p2.firstname()));
 }
};
int main(int argc, char *argv[])
{
 //类型重定义,并指定排序规则
 typedef set<Person, PersonSortCriterion> PersonSet;
 PersonSet col1;
 //创建元素,并添加到容器
 Person p1("Jay", "Chou");
 Person p2("Robin", "Chou");
 Person p3("Robin", "Lee");
 Person p4("Bob", "Smith");
 //向容器中插入元素
 col1.insert(p1);
 col1.insert(p2);
 col1.insert(p3);
 col1.insert(p4);
 PersonSet::iterator pos;
 //输出PersonSet中的所有元素
 for (pos = col1.begin(); pos != col1.end(); ++pos)
 {
  cout << pos->firstname() << " " << pos->lastname() << endl;
 }
 cout << endl;
 system("pause");
 return 0;
}

有多种状态的仿函数

#include <iostream>
#include <list>
#include<algorithm>
using namespace std;class IntSequence
{
private:
 int value;  //记录内部状态的成员变量
public:
 IntSequence(int initialValue) : value(initialValue)
 {
 }
 //仿函数
 int operator()()
 {
  return value++;
 }
};int main()
{
 list<int> col1;
 //产生长度为9的序列,依次插值到col1容器的尾部
 generate_n(back_inserter(col1),
  9,
  IntSequence(1));
 //1 2 3 4 5 6 7 8 9
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 //替换col1容器中第2个到倒数第2个,从42开始
 generate(++col1.begin(),
  --col1.end(),
  IntSequence(42));
 //1 42 43 44 45 46 47 48 9
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 system("pause");
 return 0;
}

仿函数都是传值,而不是传址的。因此算法并不会改变随参数而来的仿函数的状态。

比如:

IntSequence seq(1); //从1开始的序列
//从1开始向容器col1中插入9个元素
generate_n(back_inserter(col1), 9, seq);
//仍然从1开始向容器col1中插入9个元素
generate_n(back_inserter(col1), 9, seq);

generate函数

#include <iostream>
#include <algorithm>
#include <array>
#include <vector>
#include <functional>
using namespace std;
int main(){
 array<int,8> t1; //产生序列个100内的随机数
 generate(t1.begin(),t1.end(),[](){return rand()%100;}); //产生5个1000内的随机数
 generate_n(t1.begin(),5,[](){return rand()%1000;});
 for_each(t1.begin(),t1.end(),[](int i){cout<<i<<endl;});
 return 0;
}

当然,也有方法来解决上述使仿函数内部状态改变的问题。

方法有两种:

1、以引用的方式传递仿函数;

2、运用for_each()算法的返回值。

因为for_each()算法它返回其仿函数。也就是说,我们可以通过返回值可以取得仿函数的状态。

以引用的方式传递仿函数

#include <iostream>
#include <list>
#include <algorithm>using namespace std;class IntSequence
{
private:
 int value;
public:
 IntSequence(int initValue) : value(initValue)
 {} int operator()()
 {
  return value++;
 }
};int main()
{
 list<int> col1;
 IntSequence seq(1);
 //采用引用类型
 generate_n<back_insert_iterator<list<int> >,
  int, IntSequence&>(back_inserter(col1),
   4,
   seq);
 //1 2 3 4;
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 //相当于重新构建一个对象从42开始插入4个元素
 generate_n(back_inserter(col1),
  4,
  IntSequence(42));
 //1 2 3 4; 42 43 44 45
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 //前面使用的是引用类型,所以seq的内部状态已经被改变了
 //插值从上次完成后的5开始
 //注意:这次调用仍然使用的是传值类型
 generate_n(back_inserter(col1),
  4,
  seq);
 //1 2 3 4; 42 43 44 45; 5 6 7 8
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 //上一次调用使用的是传值类型,所以这次还是从5开始插值
 generate_n(back_inserter(col1),
  4,
  seq);
 //1 2 3 4; 42 43 44 45; 5 6 7 8; 5 6 7 8
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 system("pause");
 return 0;
}

运用for_each()算法的返回值

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;class MeanValue
{
private:
 long num;
 long sum;
public:
 MeanValue() : num(0), sum(0)
 {}
 void operator() (int elem)
 {
  num++;
  sum += elem;
 } double value()
 {
  return static_cast<double>(sum) / static_cast<double>(num);
 }
};
class Meansum
{
private:
 //long num;
 long sum;
public:
 Meansum() : sum(0)
 {}
 void operator() (int elem)
 {  sum += elem;
 } double value()
 {
  return sum;
 }
};
int main()
{
 vector<int> col1;
 for (int i = 1; i <= 8; ++i)
 {
  col1.push_back(i);
 }
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 MeanValue mv = for_each(col1.begin(), col1.end(), MeanValue());
 Meansum sum = for_each(col1.begin(), col1.end(), Meansum());
 cout << "Mean Value: " << mv.value() << endl;
 cout << "Mean sum: " << sum.value() << endl;
 system("pause");
 return 0;
}

判断式与仿函数

判断式就是返回布尔型的函数或者仿函数。对于STL而言,并非所有返回布尔值的函数都是合法的判断式。这可能会导致很多出人意料的行为,比如下例:

#include <iostream>
#include <list>
#include <algorithm>
using namespace std;class Nth
{
private:
 int nth;
 int count;
public:
 Nth(int n) : nth(n), count(0)
 {
 }
 bool operator() (int)
 {
  return ++count == nth;
 }
};
int main()
{
 list<int> col1;
 for (int i = 1; i <= 9; ++i)
 {
  col1.push_back(i);
 }
 //1 2 3 4 5 6 7 8 9
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl; list<int>::iterator pos;
 pos = remove_if(col1.begin(), col1.end(), Nth(3));
 col1.erase(pos, col1.end());
 for (auto t : col1) {
  cout << t << " ";
 }
 cout << endl;
 system("pause");
}

函数配接器(函数 适配器)

函数配接器:能够将仿函数和另一个仿函数(或某个值,或某个一般函数)结合起来的仿函数。

函数配接器包含在头文件<functional>中。预定义的函数配接器如下表所示:

先弄清几个概念,什么叫一元函数,二元函数

1、一元函数一个参数

2、二元函数 两个参数

3、一元谓词 一个参数,返回类型为bool型

4、二元谓词 两个参数,返回类型为bool型

函数适配器是用来让一个函数对象表现出另外一种类型的函数对象的特征。因为,许多情况下,我们所持有的函数对象或普通函数的参数个数或是返回值类型并不是我们想要的,这时候就需要函数适配器来为我们的函数进行适配

C++中有三类适配器,分别是容器适配器,迭代器适配器和函数适配器,这里主要介绍函数适配器。

函数适配器用于特化和扩展一元二元函数对象,函数适配器主要有以下两类:

1 绑定器

该类适配器用于将二元函数适配成一元函数

将二元函数的一个参数绑定到一个特定的值上,将二元函数对象转换成一元函数对象。

绑定器适配器有两种:bind1st bind2nd。每个绑定器接受一个函数对象和一个值

bind1st将给定值绑定到二元函数对象的第一个实参

bind2nd将给定值绑定到二元函数对象的第二个实参

#include <iostream>
#include <algorithm>
#include <functional>
#include <vector>using namespace std;bool is_odd(int n)
{
 return n % 2 == 1;
}int main(void)
{
 int a[] = { 1, 2, 3, 4, 5 };
 vector<int> v(a, a + 5); cout << count_if(v.begin(), v.end(), is_odd) << endl;
 //计算奇数元素的个数
 // 这里的bind2nd将二元函数对象modulus转换为一元函数对象。
 //bind2nd(op, value) (param)相当于op(param, value)
 cout << count_if(v.begin(), v.end(),bind2nd(modulus<int>(), 2)) << endl; //bind1st(op, value)(param)相当于op(value, param);
 //把4绑定为第一个参数,即 4 < value
 //比4大的数字有几个
 cout << count_if(v.begin(), v.end(),bind1st(less<int>(), 4)) << endl; //把3绑定为第二个参数,即 value < 3
 //比3小的数字有几个
 cout << count_if(v.begin(), v.end(), bind2nd (less<int>(), 3)) << endl; //把3绑定为第二个参数,即 value < 3
 //not1 对第一个对象取反。
 //对一元函数对象的结果取反
 //比3小的数字有几个的结果取反
 cout << count_if(v.begin(), v.end(),not1( bind2nd (less<int>(), 3)) )<< endl;
 system("pause");
 return 0;
 //输出 3 3 1 2 3
}

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方欢迎留言讨论,望不吝赐教。

(0)

相关推荐

  • c++ 判断是64位还是32位系统的实例

    1.IsWow64Process 确定指定进程是否运行在64位操作系统的32环境(Wow64)下. 语法 BOOL WINAPI IsWow64Process( __in HANDLE hProcess, __out PBOOL Wow64Process ); 参数 hProcess 进程句柄.该句柄必须具有PROCESS_QUERY_INFORMATION 或者 PROCESS_QUERY_LIMITED_INFORMATION 访问权限 Wow64Process 指向一个bool值, 如果该

  • C++ 写的UrlEncode和UrlDecode实例

    关于UrlEncode的实现(C++).网上有非常多不同的版本号.对须要编码的字符集的选取并不统一.那么究竟有没有标准呢?答案是有的. 绝对不编码的,仅仅有字母.数字.短横线(-).下划线(_).点(.)和波浪号(~),其它字符要视情况而定.所以一般性的urlencode仅仅需保留上述字符不进行编码. 以下给出实现: unsigned char ToHex(unsigned char x) { return x > 9 ? x + 55 : x + 48; } unsigned char Fro

  • C++ 浅谈emplace_back及使用误区

    今天做c++ primer题目实现标准库vector,emplace_back忽然发现我对其了解甚少,首先,我在网上找到答案的代码,之前有过了解emplace_back是通过移动构造函数实现的,那么问题来了,如果我想实现vector<Base> b这样,我将其移动构造函数显式删除,那么 b.emplace_back(....),还能工作吗? 答案是 : 能 //Base.h #include<string> class Base { public: Base() = default

  • C++ 中"emplace_back" 与 "push_back" 的区别

     C++ 中"emplace_back" 与 "push_back" 的区别 emplace_back和push_back都是向容器内添加数据. 对于在容器中添加类的对象时, 相比于push_back,emplace_back可以避免额外类的复制和移动操作. "emplace_back avoids the extra copy or move operation required when using push_back." 参见: http:

  • C++ 获取URL内容的实例

    我就废话不多说了,大家还是直接看代码吧~ 以下内容摘自StackOverFlow 链接 #ifndef HTTPUTIL_H #define HTTPUTIL_H #include <windows.h> #include <string> #include <stdio.h> using std::string; #pragma comment(lib,"ws2_32.lib") void mParseUrl(char *mUrl, string

  • c++仿函数和函数适配器的使用详解

    所谓的仿函数(functor),是通过重载()运算符模拟函数形为的类. 因此,这里需要明确两点: 1 仿函数不是函数,它是个类: 2 仿函数重载了()运算符,使得它的对你可以像函数那样子调用(代码的形式好像是在调用函数). for_each 这里的for循环语句有点冗余,想到了std::for_each ,为了使用for_each,我们需要定义一个函数,如下: void print( State* pstate ) { pstate->print(); } 于是就可以简化为下面代码: std::

  • C++函数对象Functor与匿名函数对象Lambda表达式详解

    目录 1函数对象Functor(仿函数) 1.1概念 1.2代码实例 1.3调用效率 2.匿名函数对象Lambda表达式 2.1使用形式 2.2代码实例 3总结 1函数对象Functor(仿函数) 1.1概念 函数对象就是类对象,生成这个类对象的类中,拥有一个小括号运算符重载函数. 重载了小括号运算符的类的类对象,就叫函数对象. 1.2代码实例 #include <iostream> using namespace std; template <class T1> class A

  • C++中回调函数及函数指针的实例详解

    C++中回调函数及函数指针的实例详解 如何获取到类中函数指针 实现代码: //A类与B类的定义 class A { public: void Test() { cout << "A::Test()" << endl; } }; class B : public A { public: void Test() { cout << "B::Test()" << endl; } }; //定义类的成员函数指针 typedef

  • PHP中的函数声明与使用详解

      函数 1.  函数名是标识符之一,只能有字母数字下划线,开头不能是数字: 函数名的命名,必须符合"小驼峰法则"FUNC(),func(),Func(); 函数名不区分大小写; 函数名不能与已有函数同名,不能与内置函数名同名: 2.   function_exists("func");用于检测函数是否已经声明: 注意传入的函数名,必须是字符串格式,返回结果为true/false: echo打印时,true为1,false不显示:               [ph

  • shell 使用数组作为函数参数的方法(详解)

    因工作需要,需要使用shell开发一些小工具,当使用数组作为函数参数时,发现只能传递数组的第一个元素,数组后面的元素不能传递到函数内. #!/bin/bash function showArr(){ arr=$1 for i in ${arr[*]}; do echo $i done } regions=("GZ" "SH" "BJ") showArr $regions exit 0 把代码保存为test.sh后执行,只输出了第一个元素. ./t

  • JS中的Replace()传入函数时的用法详解

    replace方法的语法是:stringObj.replace(rgExp, replaceText) 其中stringObj是字符串(string),reExp可以是正则表达式对象(RegExp)也可以是字符串(string),replaceText是替代查找到的字符串.. 废话不多说了,直接给大家贴代码了,具体代码如下所示: <script> var str = "a1ba2b"; var reg = /a.b/g; str = str.replace(reg,func

  • ES6中Array.copyWithin()函数的用法实例详解

    ES6为Array增加了copyWithin函数,用于操作当前数组自身,用来把某些个位置的元素复制并覆盖到其他位置上去. Array.prototype.copyWithin(target, start = 0, end = this.length) 该函数有三个参数. target:目的起始位置. start:复制源的起始位置,可以省略,可以是负数. end:复制源的结束位置,可以省略,可以是负数,实际结束位置是end-1. 例: 把第3个元素(从0开始)到第5个元素,复制并覆盖到以第1个位置

  • inux下gettimeofday函数windows替换方法(详解)

    实例如下: #include <time.h> #ifdef WIN32 # include <windows.h> #else # include <sys/time.h> #endif #ifdef WIN32 int gettimeofday(struct timeval *tp, void *tzp) { time_t clock; struct tm tm; SYSTEMTIME wtm; GetLocalTime(&wtm); tm.tm_year

  • C++ 中友元函数与友元类详解

    C++ 中友元函数与友元类详解 总的来说,友元分为两类:友元函数与友元类.友元是针对类而言,它提供了一种非类的成员函数来访问类的非公有成员的一种机制.可以把一个函数指定为某类的友元,这个函数称为这个类的友元函数.也可以将类A指定为类B的友元,则类A是类B的友元类,类A的所有成员函数均是类B的友元函数,均可以访问类B的非公有成员.        友元函数的注意事项: (1)友元函数不是类的成员函数,在函数体中访问对象的成员,必须用"对象名.对象成员"方式来访问, 友元函数可以访问类中的所

  • C语言中qsort函数的用法实例详解

    C语言中qsort函数的用法实例详解 快速排序是一种用的最多的排序算法,在C语言的标准库中也有快速排序的函数,下面说一下详细用法. qsort函数包含在<stdlib.h>中 qsort函数声明如下: void qsort(void * base,size_t nmemb,size_t size ,int(*compar)(const void *,const void *)); 参数说明: base,要排序的数组 nmemb,数组中元素的数目 size,每个数组元素占用的内存空间,可使用si

随机推荐