利用Python实现Json序列化库的方法步骤

前言

在Python的世界里,将一个对象以json格式进行序列化或反序列化一直是一个问题。Python标准库里面提供了json序列化的工具,我们可以简单的用json.dumps来将一个对象序列化。但是这种序列化仅支持python内置的基本类型。


Python

在Python的世界里,将一个对象以json格式进行序列化或反序列化一直是一个问题。Python标准库里面提供了json序列化的工具,我们可以简单的用json.dumps来将一个对象序列化。但是这种序列化仅支持python内置的基本类型,对于自定义的类,我们将得到Object of type A is not JSON serializable的错误。

有很多种方法可以用来支持这种序列化,这里有一个很长的关于这个问题的讨论。总结起来,基本上有两种还不错的思路:

  1. 利用标准库的接口:从python标准json库中的JSONDecoder继承,然后自定义实现一个default方法用来自定义序列化过程
  2. 利用第三方库实现:如jsonpickle jsonweb json-tricks等

利用标准库的接口的问题在于,我们需要对每一个自定义类都实现一个JSONDecoder.default接口,难以实现代码复用。

利用第三方库,对我们的代码倒是没有任何侵入性,特别是jsonpickle,由于它是基于pickle标准序列化库实现,可以实现像pickle一样序列化任何对象,一行代码都不需要修改。

但是我们观察这类第三方库的输出的时候,会发现所有的这些类库都会在输出的json中增加一个特殊的标明对象类型的属性。这是为什么呢?Python是一门动态类型的语言,我们无法在对象还没有开始构建的时候知道对象的某一属性的类型信息,为了对反序列化提供支持,看起来确实是不得不这么做。

有人可能觉得这也无可厚非,似乎不影响使用。但是在跨语言通信的时候,这就成为了一个比较麻烦的问题。比如我们有一个Python实现的API,客户端发送了一个json请求过来,我们想在统一的一个地方将json反序列化为我们Python代码的对象。由于客户端不知道服务器端的类型信息,json请求里面就没法加入这样的类型信息,这也就导致这样的类库在反序列化的时候遇到问题。

能不能有一个相对完美的实现呢?先看一下我们理想的json序列化库的需求:

  1. 我们希望能简单的序列化任意自定义对象,只添加一行代码,或者不加入任何代码
  2. 我们希望序列化的结果不加入任何非预期的属性
  3. 我们希望能按照指定的类型进行反序列化,能自动处理嵌套的自定义类,只需要自定义类提供非常简单的支持,或者不需要提供任何支持
  4. 我们希望反序列化的时候能很好的处理属性不存在的情况,以便在我们加入某一属性的时候,可以设置默认值,使得旧版本的序列化结果可以正确的反序列化出来

如果有一个json库能支持上面的四点,那就基本是比较好用的库了。下面我们来尝试实现一下这个类库。

对于我们想要实现的几个需求,我们可以建立下面这样的测试来表达我们所期望的库的API设计:

class A(JsonSerializable):

def __init__(self, a, b):
super().__init__()
self.a = a
self.b = b if b is not None else B(0)

@property
def id(self):
return self.a

def _deserialize_prop(self, name, deserialized):
if name == 'b':
self.b = B.deserialize(deserialized)
return
super()._deserialize_prop(name, deserialized)

class B(JsonSerializable):

def __init__(self, b):
super().__init__()
self.b = b

class JsonSerializableTest(unittest.TestCase):

def test_model_should_serialize_correctly(self):
self.assertEqual(json.dumps({'a': 1, 'b': {'b': 2}}), A(1, B(2)).serialize())

def test_model_should_deserialize_correctly(self):
a = A.deserialize(json.dumps({'a': 1, 'b': {'b': 2}}))
self.assertEqual(1, a.a)
self.assertEqual(2, a.b.b)

def test_model_should_deserialize_with_default_value_correctly(self):
a = A.deserialize(json.dumps({'a': 1}))
self.assertEqual(1, a.a)
self.assertEqual(0, a.b.b)

这里我们希望通过继承的方式来添加支持,这将在反序列化的时候提供一个好处。因为有了它我们就可以直接使用A.deserialize方法来反序列化,而不需要提供任何其他的反序列化函数参数,比如这样json.deserialize(serialized_str, A)。

同时为了验证我们的框架不会将@property属性序列化或者反序列化,我们特意在类A中添加了这样一个属性。

由于在反序列化的时候,框架是无法知道某一个对象属性的类型信息,比如测试中的A.b,为了能正确的反序列化,我们需要提供一点简单的支持,这里我们在类A中覆盖实现了一个父类的方法_deserialize_prop对属性b的反序列化提供支持。

当我们要反序列化一个之前版本的序列化结果时,我们希望能正确的反序列化并使用我们提供的默认值作为最终的反序列化值。这在属性A.b的测试中得到了体现。

(上面的测试有很多边界的情况、支持的变量类型并没有覆盖,此测试只是作为示例使用。)

如果能有一个类可以让上面的测试通过,相信那个类就是我们所需要的类了。这样的类可以实现为如下:

def is_normal_prop(obj, key):
is_prop = isinstance(getattr(type(obj), key, None), property)
is_func_attr = callable(getattr(obj, key))
is_private_attr = key.startswith('__')
return not (is_func_attr or is_prop or is_private_attr)

def is_basic_type(value):
return value is None or type(value) in [int, float, str, bool]

class JsonSerializable:

def _serialize_prop(self, name):
return getattr(self, name)

def _as_dict(self):
props = {}
for key in dir(self):
if not is_normal_prop(self, key):
continue
value = self._serialize_prop(key)
if not (is_basic_type(value) or isinstance(value, JsonSerializable)):
raise Exception('unknown value to serialize to dict: key={}, value={}'.format(key, value))
props[key] = value if is_basic_type(value) else value._as_dict()
return props

def serialize(self):
return json.dumps(self._as_dict(), ensure_ascii=False)

def _deserialize_prop(self, name, deserialized):
setattr(self, name, deserialized)

@classmethod
def deserialize(cls, json_encoded):
if json_encoded is None:
return None

args = inspect.getfullargspec(cls)
args_without_self = args.args[1:]
obj = cls(*([None] * len(args_without_self)))

data = json.loads(json_encoded, encoding='utf8') if type(json_encoded) is str else json_encoded
for key in dir(obj):
if not is_normal_prop(obj, key):
continue
if key in data:
obj._deserialize_prop(key, data[key])
return obj

在实现时,我们利用了Python的内省机制,这样就可以自动的识别对象的属性及运行时类型了。当然对于这个简单的类还有很多待支持的功能,使用上也有很多限制,比如:

  1. 当某一属性为自定义类的类型的时候,需要子类覆盖实现_deserialize_prop方法为反序列化过程提供支持
  2. 当某一属性为由自定义类构成的一个list tuple dict复杂对象时,需要子类覆盖实现_deserialize_prop方法为反序列化过程提供支持
  3. 简单属性必须为python内置的基础类型,比如如果某一属性的类型为numpy.float64,序列化反序列化将不能正常工作

虽然有上述限制,但是这正好要求我们在做模型设计的时候保持克制,不要将某一个对象设计得过于复杂。比如如果有属性为dict类型,我们可以将这个dict抽象为另一个自定义类型,然后用类型嵌套的方式来实现。

到这里这个基类就差不多可以支撑我们日常的开发需要了。当然对于这个简单的实现还有可能有其他的需求或者问题,大家如有发现,欢迎留言交流。

总结

到此这篇关于利用Python实现Json序列化库的文章就介绍到这了,更多相关Python实现Json序列化库内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python 解析库json及jsonpath pickle的实现

    1. 数据抽取的概念 2. 数据的分类 3. JSON数据概述及解析 3.1 JSON数据格式 3.2 解析库json json模块是Python内置标准库,主要可以完成两个功能:序列化和反序列化.JSON对象和Python对象映射图如下: 3.2.1 json序列化 对象(字典/列表) 通过 json.dump()/json.dumps() ==> json字符串.示例代码如下: import json class Phone(object): def __init__(self, name,

  • 如何将json数据转换为python数据

    JSON对象是javascript object即javascript中的对象,是一种通用的格式,格式严格,不支持备注. JSON文本和JSON对象的区别: JSON文本是符合JSON格式的文本,实际上是一个字符串 JSON对象是内存中一个对象,拥有属性和方法,可以通过对象获取其中的参数信息 Python中我们一般提到JSON对象指的是字典 Python的字典的格式和JSON格式,稍有不同: 字典中的引号支持单引号和双引号,JSON格式只支持双引号 字典中的True/False首字母大写,JSO

  • python,Java,JavaScript实现indexOf

    简介 最近做项目的时候,发现无论是前端还是后端,indexOf出现的概率都非常频繁,今天我们来看下他的实现原理吧! indexOf的含义:给定一个字符串去匹配另一个字符串的下标,如果匹配到,返回下标,如果匹配不到则返回-1,其实原理还是比较简单的,如果需要你实现,那么应该怎么做呢? 原理 现在给定匹配的字符串A,原始字符串B,比如匹配字符串A等于"叫练",原始字符串B等于"边叫边练,我喜欢叫练",你可能一眼就发现"叫练"是最后两个字符,我们以B做

  • python与js主要区别点总结

    数据类型 js和python都是动态语言,a = 1; a = 'abc',a这个变量是动态的,类型是随时可以被更改的.而在java中就是静态语言变量,int a = 1:a = 'abc' 就会报错. 基本命令 1.输出 js里面的console.log().document.write().window.alert().document.writeIn() python里面是print() 2.输入 js里面是window.prompt() python里面是input() 3.加注释 js

  • python如何运行js语句

    1. 安装 pip install PyExecJS  # 需要注意, 包的名称:PyExecJS 2. 简单使用 import execjs execjs.eval("new Date") 返回值为: 2018-04-04T12:53:17.759Z execjs.eval("Date.now()") 返回值为:1522847001080  # 需要注意的是返回值是13位, 区别于python的time.time() 需要注意的是: 个别的JS语句, 用execj

  • 利用Python实现Json序列化库的方法步骤

    前言 在Python的世界里,将一个对象以json格式进行序列化或反序列化一直是一个问题.Python标准库里面提供了json序列化的工具,我们可以简单的用json.dumps来将一个对象序列化.但是这种序列化仅支持python内置的基本类型. Python 在Python的世界里,将一个对象以json格式进行序列化或反序列化一直是一个问题.Python标准库里面提供了json序列化的工具,我们可以简单的用json.dumps来将一个对象序列化.但是这种序列化仅支持python内置的基本类型,对

  • 利用python修改json文件的value方法

    做工程时遇到需要监听json文件,根据json文件中的key-value值作出相应处理的情形.为此写了修改json文件的python脚本供工程后续调用. 代码如下: # coding=utf-8 //设置文本格式 import os,sys import json def get_new_json(filepath,key,value): key_ = key.split(".") key_length = len(key_) with open(filepath, 'rb') as

  • 利用python将json数据转换为csv格式的方法

    假设.json文件中存储的数据为: {"type": "Point", "link": "http://www.dianping.com/newhotel/22416995", "coordinates": [116.37256372996957, 40.39798447055443], "category": "经济型", "name": &qu

  • Python解析JSON数据的基本方法实例代码

    目录 一.JSON数据格式介绍 二.Python处理JSON数据 json.dumps json.loads 语法 总结 一.JSON数据格式介绍 JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式. JSON建构于两种结构:json是Javascript中的对象和数组中的对象,本质上来讲就是有特定结构的字符串,所以可以通过这两种结构可以表示各种复杂的结构: 1 对象: 对象在js中表示为”{}”括起来的内容,数据结构为{key:value, key:v

  • 利用python打开摄像头及颜色检测方法

    最近两周由于忙于个人项目,一直未发言了,实在是太荒凉了....,上周由于项目,见到Python的应用极为广泛,用起来也特别顺手,于是小编也开始着手学习Python,-下面我就汇报下今天的学习成果吧 小编运行环境unbuntu 14.0.4 首先我们先安装一下Python呗,我用的2.7,其实特别简单,一行指令就OK sudo apt-get install python-dev 一般安装系统的时候其实python已经自带了,这步基本可以不用做,OK,我们继续往下走吧,安装python-openc

  • 如何在vscode中安装python库的方法步骤

    vscode安装python库 1.已经在vscode中装了python并配置好python运行环境. 检查是否正确配置好运行环境,按Windows+R组合键在运行窗口输入cmd,打开命令提示符窗口输入python确定即可 2.找到vscode中python的路径 随便运行一个代码,例如print("hehe")下面的终端显示如下 图中红色地方圈起的便是python的路径,到python3.8为止. 如果你所显示的内容与我不同,可在setting.json中查找并将路径复制下来(在vs

  • 利用Python过滤相似文本的简单方法示例

    问题 假设你在存档中有成千上万的文档,其中许多是彼此重复的,即使文档的内容相同,标题不同. 现在想象一下,现在老板要求你通过删除不必要的重复文档来释放一些空间. 问题是:如何过滤标题足够相似的文本,以使内容可能相同? 接下来,如何实现此目标,以便在完成操作时不会删除过多的文档,而保留一组唯一的文档? 让我们用一些代码使它更清楚: titles = [ "End of Year Review 2020", "2020 End of Year", "Janua

  • 利用Python提取PDF文本的简单方法实例

    目录 第一步,安装工具库 第二步,编写代码 第三步,执行 最后的话 你好,一般情况下,Ctrl+C 是最简单的方法,当无法 Ctrl+C 时,我们借助于 Python,以下是具体步骤: 第一步,安装工具库 1.tika — 用于从各种文件格式中进行文档类型检测和内容提取 2.wand — 基于 ctypes 的简单 ImageMagick 绑定 3.pytesseract — OCR 识别工具 创建一个虚拟环境,安装这些工具 python -m venv venv source venv/bin

  • 利用Python中的pandas库对cdn日志进行分析详解

    前言 最近工作工作中遇到一个需求,是要根据CDN日志过滤一些数据,例如流量.状态码统计,TOP IP.URL.UA.Referer等.以前都是用 bash shell 实现的,但是当日志量较大,日志文件数G.行数达数千万亿级时,通过 shell 处理有些力不从心,处理时间过长.于是研究了下Python pandas这个数据处理库的使用.一千万行日志,处理完成在40s左右. 代码 #!/usr/bin/python # -*- coding: utf-8 -*- # sudo pip instal

  • python使用json序列化datetime类型实例解析

    使用python的json模块序列化时间或者其他不支持的类型时会抛异常,例如下面的代码: # -*- coding: cp936 -*- from datetime import datetime import json if __name__=='__main__': now = datetime.now() json.dumps({'now':now}) 运行会出现下面的错误信息: Traceback (most recent call last): File "C:\Users\xx\De

随机推荐