基于OpenCV 差分法实现绿叶识别

目录
  • 实现原理
  • 功能函数代码
  • C++测试代码

实现原理

物体识别是图像处理学在现实生活中较多的应用之一,目前最为流行的就是运用AI、机器学习等技术结合图像处理学,大量训练数据集,以实现智能且精确的识别。说到人工智能,很多人可能觉得它非常深奥和复杂,其实说白了它最底层的识别逻辑还是基于普通的图像分析,像特征提取、轮廓分析、比对分析等等,再在庞大的数据集中按照相似程度,分析出一个最可能的结果。

本文提供了一种相对简单的思路来实现绿叶识别,适合初学图像处理的新人研究参考。该方法为差分法:首先对图像进行高斯滤波处理预处理,平滑图像数据;其次,将图像颜色通道按RGB拆分,因为识别物为绿叶,其最明显的特征就是颜色;差分法,将绿色通道减去蓝色通道,之所以选择这两个通道,是因为蓝色通道和绿叶的关系较远,而红色搭配绿色可是黄色哦,绿叶中存在黄色特征信息可是再正常不过了;之后,对差分图进行OTSU阈值处理,得到掩膜感兴趣ROI区域;再后,就是对区域进行闭运算和孔洞闭合处理,保持区域完整性;最后,根据掩膜提取绿叶,完成。

功能函数代码

1)识别绿叶函数。

// 识别绿叶
Mat IdentifyLeaves(cv::Mat input)
{
	CV_Assert(input.channels() == 3);
	Mat temp, result, mask, hole;
	int row = input.rows;
	int col = input.cols;

	// 高斯滤波
	GaussianBlur(input, temp, Size(5, 5), 0);

	// 通道拆分
	vector<cv::Mat> c;
	split(temp, c);

	// 绿通道-蓝通道,提取绿色区域
	Mat diff = c[1] - c[0];
	threshold(diff, mask, 0, 255, THRESH_OTSU);

	// 闭运算封口
	cv::Mat element = getStructuringElement(MORPH_ELLIPSE, Size(9, 9));
	cv::morphologyEx(mask, mask, MORPH_CLOSE, element);

	// 孔洞闭合
	hole = 255 - mask;
	Clear_MicroConnected_Areas(hole, hole, row*col / 300);
	mask = 255 - hole;
	Clear_MicroConnected_Areas(mask, mask, row*col / 300);

	// 识别区域标记
	result = input.clone();
	result.setTo(Scalar(0, 0, 0), mask == 0);
	return result;
}

2)清除微小面积连通区函数,用于孔洞闭合。具体介绍见:

OpenCV-清除小面积连通域

/**
* @brief  Clear_MicroConnected_Areas         清除微小面积连通区函数
* @param  src                                输入图像矩阵
* @param  dst                                输出结果
* @return min_area                           设定的最小面积清除阈值
*/
void Clear_MicroConnected_Areas(cv::Mat src, cv::Mat &dst, double min_area)
{
	// 备份复制
	dst = src.clone();
	std::vector<std::vector<cv::Point> > contours;  // 创建轮廓容器
	std::vector<cv::Vec4i> 	hierarchy;

	// 寻找轮廓的函数
	// 第四个参数CV_RETR_EXTERNAL,表示寻找最外围轮廓
	// 第五个参数CV_CHAIN_APPROX_NONE,表示保存物体边界上所有连续的轮廓点到contours向量内
	cv::findContours(src, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_NONE, cv::Point());

	if (!contours.empty() && !hierarchy.empty())
	{
		std::vector<std::vector<cv::Point> >::const_iterator itc = contours.begin();
		// 遍历所有轮廓
		while (itc != contours.end())
		{
			// 定位当前轮廓所在位置
			cv::Rect rect = cv::boundingRect(cv::Mat(*itc));
			// contourArea函数计算连通区面积
			double area = contourArea(*itc);
			// 若面积小于设置的阈值
			if (area < min_area)
			{
				// 遍历轮廓所在位置所有像素点
				for (int i = rect.y; i < rect.y + rect.height; i++)
				{
					uchar *output_data = dst.ptr<uchar>(i);
					for (int j = rect.x; j < rect.x + rect.width; j++)
					{
						// 将连通区的值置0
						if (output_data[j] == 255)
						{
							output_data[j] = 0;
						}
					}
				}
			}
			itc++;
		}
	}
}

C++测试代码

#include <iostream>
#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv;

void Clear_MicroConnected_Areas(cv::Mat src, cv::Mat &dst, double min_area);
Mat IdentifyLeaves(cv::Mat input);

int main()
{
	Mat src = imread("test1.png");
	Mat result = IdentifyLeaves(src);

	imshow("src", src);
	imshow("result", result);
	waitKey(0);

	return 0;
}

/**
* @brief  Clear_MicroConnected_Areas         清除微小面积连通区函数
* @param  src                                输入图像矩阵
* @param  dst                                输出结果
* @return min_area                           设定的最小面积清除阈值
*/
void Clear_MicroConnected_Areas(cv::Mat src, cv::Mat &dst, double min_area)
{
	// 备份复制
	dst = src.clone();
	std::vector<std::vector<cv::Point> > contours;  // 创建轮廓容器
	std::vector<cv::Vec4i> 	hierarchy;

	// 寻找轮廓的函数
	// 第四个参数CV_RETR_EXTERNAL,表示寻找最外围轮廓
	// 第五个参数CV_CHAIN_APPROX_NONE,表示保存物体边界上所有连续的轮廓点到contours向量内
	cv::findContours(src, contours, hierarchy, cv::RETR_TREE, cv::CHAIN_APPROX_NONE, cv::Point());

	if (!contours.empty() && !hierarchy.empty())
	{
		std::vector<std::vector<cv::Point> >::const_iterator itc = contours.begin();
		// 遍历所有轮廓
		while (itc != contours.end())
		{
			// 定位当前轮廓所在位置
			cv::Rect rect = cv::boundingRect(cv::Mat(*itc));
			// contourArea函数计算连通区面积
			double area = contourArea(*itc);
			// 若面积小于设置的阈值
			if (area < min_area)
			{
				// 遍历轮廓所在位置所有像素点
				for (int i = rect.y; i < rect.y + rect.height; i++)
				{
					uchar *output_data = dst.ptr<uchar>(i);
					for (int j = rect.x; j < rect.x + rect.width; j++)
					{
						// 将连通区的值置0
						if (output_data[j] == 255)
						{
							output_data[j] = 0;
						}
					}
				}
			}
			itc++;
		}
	}
}

// 识别绿叶
Mat IdentifyLeaves(cv::Mat input)
{
	CV_Assert(input.channels() == 3);
	Mat temp, result, mask, hole;
	int row = input.rows;
	int col = input.cols;

	// 高斯滤波
	GaussianBlur(input, temp, Size(5, 5), 0);

	// 通道拆分
	vector<cv::Mat> c;
	split(temp, c);

	// 绿通道-蓝通道,提取绿色区域
	Mat diff = c[1] - c[0];
	threshold(diff, mask, 0, 255, THRESH_OTSU);

	// 闭运算封口
	cv::Mat element = getStructuringElement(MORPH_ELLIPSE, Size(9, 9));
	cv::morphologyEx(mask, mask, MORPH_CLOSE, element);

	// 孔洞闭合
	hole = 255 - mask;
	Clear_MicroConnected_Areas(hole, hole, row*col / 300);
	mask = 255 - hole;
	Clear_MicroConnected_Areas(mask, mask, row*col / 300);

	// 识别区域标记
	result = input.clone();
	result.setTo(Scalar(0, 0, 0), mask == 0);
	return result;
}

测试效果

图1 原图1

图2 效果图1

图3 原图2

图4 效果图2

图5 原图3

图6 效果图3

本文只是提供了一种简单的识别思路,不可能满足所有的场景。举几个例子,如图6所示,因为孔洞闭合的缘故,导致绿叶间的间隙也被涵盖了;又或者,当所识别的绿叶没那么绿,有点偏暗时,蓝色通道的比例自然也提高了,此时用差分法效果就不会那么好了。

总而言之,不同的场景和需求还是需要结合实际进行算法的设计,天下没有一种算法是可以解决一切问题的,即便是人工智能也不可能,特殊问题特殊对待,加油!

到此这篇关于基于OpenCV 差分法实现绿叶识别(图像差分+颜色通道)的文章就介绍到这了,更多相关OpenCV 内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++基于OpenCV实现手势识别的源码

    先给大家上效果图: 源码在下面 使用 RGB 值分割手部区域,即手部的 GB 值将与背景不同 或者使用边缘检测 或者 背景减法. 我这里使用了背景减法模型.OpenCV为我们提供了不同的背景减法模型,codebook   它的作用是对某些帧进行一段时间的精确校准.其中对于它获取的所有图像:它计算每个像素的平均值和偏差,并相应地指定框. 在前景中它就像一个黑白图像,只有手是白色的 用 Convex Hull 来找到指尖.Convex hull 基本上是包围手部区域的凸集. 包围手的红线是凸包.基本

  • OpenCV 视频中火焰检测识别实践

    主要完成两个视频中火焰的检测,主要结合RGB判据和HIS判据,设定合适的阈值条件,检测出火焰对应像素的区域,将原图二值化,经过中值滤波以及数学形态学的膨胀运算等图像处理,消除一些噪声及离散点,连通一些遗漏的区域.基于OpenCV的开源库,在VS2013平台上,实现了两个视频中火焰的检测. 利用OpenCV有强大的图像处理库,直接将图像分离为RGB三通道,设置条件限制,找到火焰的像素位置,将原图处理成二值图像.对于火焰检测,本文结合RGB判据和HIS判据,分割出火焰的区域.一般用于人眼观看的颜色模

  • Python OpenCV实现识别信用卡号教程详解

    目录 通过与 OpenCV 模板匹配的 OCR 信用卡 OCR 结果 总结 今天的博文分为三个部分. 在第一部分中,我们将讨论 OCR-A 字体,这是一种专为辅助光学字符识别算法而创建的字体. 然后我们将设计一种计算机视觉和图像处理算法,它可以: 本地化信用卡上的四组四位数字. 提取这四个分组中的每一个,然后单独分割 16 个数字中的每一个. 使用模板匹配和 OCR-A 字体识别 16 个信用卡数字中的每一个. 最后,我们将看一些将信用卡 OCR 算法应用于实际图像的示例. 通过与 OpenCV

  • OpenCV简单标准数字识别的完整实例

    在学习openCV时,看到一个问答做数字识别,里面配有代码,应用到了openCV里面的ml包,很有学习价值. https://stackoverflow.com/questions/9413216/simple-digit-recognition-ocr-in-opencv-python# import sys import numpy as np import cv2 im = cv2.imread('t.png') im3 = im.copy() gray = cv2.cvtColor(im

  • 基于OpenCV 差分法实现绿叶识别

    目录 实现原理 功能函数代码 C++测试代码 实现原理 物体识别是图像处理学在现实生活中较多的应用之一,目前最为流行的就是运用AI.机器学习等技术结合图像处理学,大量训练数据集,以实现智能且精确的识别.说到人工智能,很多人可能觉得它非常深奥和复杂,其实说白了它最底层的识别逻辑还是基于普通的图像分析,像特征提取.轮廓分析.比对分析等等,再在庞大的数据集中按照相似程度,分析出一个最可能的结果. 本文提供了一种相对简单的思路来实现绿叶识别,适合初学图像处理的新人研究参考.该方法为差分法:首先对图像进行

  • Python基于opencv实现的人脸识别(适合初学者)

    目录 一点背景知识 一.人脸识别步骤 二.直接上代码 (1)录入人脸.py (2)数据训练.py (3)进行识别.py 三.运行过程及结果 1.获取人脸照片于目标文件中 2.进行数据训练,获得trainer.yml文件中的数据 3.进行识别 总结 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenCV 已被广泛运用在各种项目上,从谷歌街景的图片拼接,到交互艺术展览的技术实现中,都有

  • Python基于OpenCV库Adaboost实现人脸识别功能详解

    本文实例讲述了Python基于OpenCV库Adaboost实现人脸识别功能.分享给大家供大家参考,具体如下: 以前用Matlab写神经网络的面部眼镜识别算法,研究算法逻辑,采集大量训练数据,迭代,计算各感知器的系数...相当之麻烦~而现在运用调用pythonOpenCV库Adaboost算法,无需知道算法逻辑,无需进行模型训练,人脸识别变得相当之简单了. 需要用到的库是opencv(open source computer vision),下载安装方式如下: 使用pip install num

  • python基于opencv实现人脸识别

    将opencv中haarcascade_frontalface_default.xml文件下载到本地,我们调用它辅助进行人脸识别. 识别图像中的人脸 #coding:utf-8 import cv2 as cv # 读取原始图像 img = cv.imread('face.png') # 调用熟悉的人脸分类器 识别特征类型 # 人脸 - haarcascade_frontalface_default.xml # 人眼 - haarcascade_eye.xml # 微笑 - haarcascad

  • 详解基于Facecognition+Opencv快速搭建人脸识别及跟踪应用

    人脸识别技术已经相当成熟,面对满大街的人脸识别应用,像单位门禁.刷脸打卡.App解锁.刷脸支付.口罩检测........ 作为一个图像处理的爱好者,怎能放过人脸识别这一环呢!调研开搞,发现了超实用的Facecognition!现在和大家分享下~~ Facecognition人脸识别原理大体可分为: 1.通过hog算子定位人脸,也可以用cnn模型,但本文没试过: 2.Dlib有专门的函数和模型,实现人脸68个特征点的定位.通过图像的几何变换(仿射.旋转.缩放),使各个特征点对齐(将眼睛.嘴等部位移

  • Python基于opencv的简单图像轮廓形状识别(全网最简单最少代码)

    可以直接跳到最后整体代码看一看是不是很少的代码!!!! 思路: 1. 数据的整合 2. 图片的灰度转化 3. 图片的二值转化 4. 图片的轮廓识别 5. 得到图片的顶点数 6. 依据顶点数判断图像形状 一.原数据的展示 图片文件共36个文件夹,每个文件夹有100张图片,共3600张图片. 每一个文件夹里都有形同此类的图形 二.数据的整合 对于多个文件夹,分析起来很不方便,所有决定将其都放在一个文件夹下进行分析,在python中具体实现如下: 本次需要的包 import cv2 import os

  • c++ 基于opencv 识别、定位二维码

    前言 因工作需要,需要定位图片中的二维码:我遂查阅了相关资料,也学习了opencv开源库.通过一番努力,终于很好的实现了二维码定位.本文将讲解如何使用opencv定位二维码. 定位二维码不仅仅是为了识别二维码:还可以通过二维码对图像进行水平纠正以及相邻区域定位.定位二维码,不仅需要图像处理相关知识,还需要分析二维码的特性,本文先从二维码的特性讲起. 1 二维码特性 二维码在设计之初就考虑到了识别问题,所以二维码有一些特征是非常明显的. 二维码有三个"回""字形图案,这一点非常

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • Python基于Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • 如何基于opencv实现简单的数字识别

    目录 前言 要解决的问题 解决问题的思路 总结 前言 由于自己学识尚浅,不能用python深度学习来识别这里的数字,所以就完全采用opencv来识别数字,然后在这里分享.记录一下自己在学习过程中的一些所见所得和所想 要解决的问题 这是一个要识别的数字,我这里首先是对图像进行一个ROI的提取,提取结果就仅仅剩下数字,把其他的一些无关紧要的要素排除在外, 这是ROI图片,我们要做的就是识别出该照片中的数字, 解决问题的思路 1.先把这个图片中的数字分割,分割成为5张小图片,每张图片包含一个数字,为啥

随机推荐