opencv+python识别七段数码显示器的数字(数字识别)

目录
  • 一、什么是七段数码显示器
  • 二、创建opencv数字识别器

一、什么是七段数码显示器

七段LCD数码显示器有很多叫法:段码液晶屏、段式液晶屏、黑白笔段屏、段码LCD液晶屏、段式显示器、TN液晶屏、段码液晶显示器、段码屏幕、笔段式液晶屏、段码液晶显示屏、段式LCD、笔段式LCD等。

如下图,每个数字都由一个七段组件组成。

七段显示器总共可以呈现 128 种可能的状态:

我们要识别其中的0-9,如果用深度学习的方式有点小题大做,并且如果要进行应用还有很多前序工作需要进行,比如要确认识别什么设备的,怎么找到数字区域并进行分割等等。

二、创建opencv数字识别器

我们这里进行使用空调恒温器进行识别,首先整理下流程。

1、定位恒温器上的 LCD屏幕。

2、提取 LCD的图像。

3、提取数字区域

4、识别数字。

我们创建名称为recognize_digits.py的文件,代码如下。仅思路供参考(因为代码中的一些参数只适合测试图片)

# import the necessary packages
from imutils.perspective import four_point_transform
from imutils import contours
import imutils
import cv2
# define the dictionary of digit segments so we can identify
# each digit on the thermostat

DIGITS_LOOKUP = {
	(1, 1, 1, 0, 1, 1, 1): 0,
	(0, 0, 1, 0, 0, 1, 0): 1,
	(1, 0, 1, 1, 1, 1, 0): 2,
	(1, 0, 1, 1, 0, 1, 1): 3,
	(0, 1, 1, 1, 0, 1, 0): 4,
	(1, 1, 0, 1, 0, 1, 1): 5,
	(1, 1, 0, 1, 1, 1, 1): 6,
	(1, 0, 1, 0, 0, 1, 0): 7,
	(1, 1, 1, 1, 1, 1, 1): 8,
	(1, 1, 1, 1, 0, 1, 1): 9
}

# load the example image
image = cv2.imread("example.jpg")#
# pre-process the image by resizing it, converting it to
# graycale, blurring it, and computing an edge map
image = imutils.resize(image, height=500)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
edged = cv2.Canny(blurred, 50, 200, 255)

# find contours in the edge map, then sort them by their
# size in descending order
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
displayCnt = None
# loop over the contours
for c in cnts:
	# approximate the contour
	peri = cv2.arcLength(c, True)
	approx = cv2.approxPolyDP(c, 0.02 * peri, True)
	# if the contour has four vertices, then we have found
	# the thermostat display
	if len(approx) == 4:
		displayCnt = approx
		break

# extract the thermostat display, apply a perspective transform
# to it
warped = four_point_transform(gray, displayCnt.reshape(4, 2))
output = four_point_transform(image, displayCnt.reshape(4, 2))

# threshold the warped image, then apply a series of morphological
# operations to cleanup the thresholded image
thresh = cv2.threshold(warped, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (1, 5))
thresh = cv2.morphologyEx(thresh, cv2.MORPH_OPEN, kernel)

# find contours in the thresholded image, then initialize the
# digit contours lists
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
digitCnts = []
# loop over the digit area candidates
for c in cnts:
	# compute the bounding box of the contour
	(x, y, w, h) = cv2.boundingRect(c)
	# if the contour is sufficiently large, it must be a digit
	if w >= 15 and (h >= 30 and h <= 40):
		digitCnts.append(c)

# sort the contours from left-to-right, then initialize the
# actual digits themselves
digitCnts = contours.sort_contours(digitCnts, method="left-to-right")[0]
digits = []

# loop over each of the digits
for c in digitCnts:
	# extract the digit ROI
	(x, y, w, h) = cv2.boundingRect(c)
	roi = thresh[y:y + h, x:x + w]
	# compute the width and height of each of the 7 segments
	# we are going to examine
	(roiH, roiW) = roi.shape
	(dW, dH) = (int(roiW * 0.25), int(roiH * 0.15))
	dHC = int(roiH * 0.05)
	# define the set of 7 segments
	segments = [
		((0, 0), (w, dH)),	# top
		((0, 0), (dW, h // 2)),	# top-left
		((w - dW, 0), (w, h // 2)),	# top-right
		((0, (h // 2) - dHC) , (w, (h // 2) + dHC)), # center
		((0, h // 2), (dW, h)),	# bottom-left
		((w - dW, h // 2), (w, h)),	# bottom-right
		((0, h - dH), (w, h))	# bottom
	]
	on = [0] * len(segments)

	# loop over the segments
	for (i, ((xA, yA), (xB, yB))) in enumerate(segments):
		# extract the segment ROI, count the total number of
		# thresholded pixels in the segment, and then compute
		# the area of the segment
		segROI = roi[yA:yB, xA:xB]
		total = cv2.countNonZero(segROI)
		area = (xB - xA) * (yB - yA)
		# if the total number of non-zero pixels is greater than
		# 50% of the area, mark the segment as "on"
		if total / float(area) > 0.5:
			on[i]= 1
	# lookup the digit and draw it on the image
	digit = DIGITS_LOOKUP[tuple(on)]
	digits.append(digit)
	cv2.rectangle(output, (x, y), (x + w, y + h), (0, 255, 0), 1)
	cv2.putText(output, str(digit), (x - 10, y - 10),
		cv2.FONT_HERSHEY_SIMPLEX, 0.65, (0, 255, 0), 2)

# display the digits
print(u"{}{}.{} \u00b0C".format(*digits))
cv2.imshow("Input", image)
cv2.imshow("Output", output)
cv2.waitKey(0)

原始图片

边缘检测

识别的结果图片

到此这篇关于opencv+python识别七段数码显示器的数字(数字识别)的文章就介绍到这了,更多相关opencv数字识别内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python-OpenCV实战:利用 KNN 算法识别手写数字

    目录 前言 手写数字数据集 MNIST 介绍 基准模型--利用 KNN 算法识别手写数字 改进模型1--参数 K 对识别手写数字精确度的影响 改进模型2--训练数据量对识别手写数字精确度的影响 改进模型3--预处理对识别手写数字精确度的影响 改进模型4--使用高级描述符作为图像特征提高 KNN 算法准确率 完整代码 相关链接 前言 K-最近邻 (k-nearest neighbours, KNN) 是监督学习中最简单的算法之一,KNN 可用于分类和回归问题,在博文<Python OpenCV实战

  • Python+Opencv实现数字识别的示例代码

    一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

  • 如何基于opencv实现简单的数字识别

    目录 前言 要解决的问题 解决问题的思路 总结 前言 由于自己学识尚浅,不能用python深度学习来识别这里的数字,所以就完全采用opencv来识别数字,然后在这里分享.记录一下自己在学习过程中的一些所见所得和所想 要解决的问题 这是一个要识别的数字,我这里首先是对图像进行一个ROI的提取,提取结果就仅仅剩下数字,把其他的一些无关紧要的要素排除在外, 这是ROI图片,我们要做的就是识别出该照片中的数字, 解决问题的思路 1.先把这个图片中的数字分割,分割成为5张小图片,每张图片包含一个数字,为啥

  • OpenCV简单标准数字识别的完整实例

    在学习openCV时,看到一个问答做数字识别,里面配有代码,应用到了openCV里面的ml包,很有学习价值. https://stackoverflow.com/questions/9413216/simple-digit-recognition-ocr-in-opencv-python# import sys import numpy as np import cv2 im = cv2.imread('t.png') im3 = im.copy() gray = cv2.cvtColor(im

  • 详解Python OpenCV数字识别案例

    前言 实践是检验真理的唯一标准. 因为觉得一板一眼地学习OpenCV太过枯燥,于是在网上找了一个以项目为导向的教程学习.话不多说,动手做起来. 一.案例介绍 提供信用卡上的数字模板: 要求:识别出信用卡上的数字,并将其直接打印在原图片上.虽然看起来很蠢,但既然可以将数字打印在图片上,说明已经成功识别数字,因此也可以将其转换为数字文本保存.车牌号识别等项目的思路与此案例类似. 示例: 原图 处理后的图 二.步骤 大致分为如下几个步骤: 1.模板读入 2.模板预处理,将模板数字分开,并排序 3.输入

  • python opencv实现信用卡的数字识别

    本项目利用python以及opencv实现信用卡的数字识别 前期准备 导入工具包 定义功能函数 模板图像处理 读取模板图像 cv2.imread(img) 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 二值化 cv2.threshold() 轮廓 - 轮廓 信用卡图像处理 读取信用卡图像 cv2.imread(img) 灰度化处理 cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 礼帽处理 cv2.morphologyEx(gray

  • python基于OpenCV模板匹配识别图片中的数字

    前言 本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出"读取失败". 操作环境: OpenCV - 4.1.0 Python 3.8.1 程序目标 单个数字模板:(这些单个模板是我自己直接从图片上截取下来的) 要处理的图片: 终端输出: 文本输出: 思路讲解 代码讲解 首先定义两个会用到的函数 第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了 def cv_show(name, img): cv2.imsh

  • opencv+python识别七段数码显示器的数字(数字识别)

    目录 一.什么是七段数码显示器 二.创建opencv数字识别器 一.什么是七段数码显示器 七段LCD数码显示器有很多叫法:段码液晶屏.段式液晶屏.黑白笔段屏.段码LCD液晶屏.段式显示器.TN液晶屏.段码液晶显示器.段码屏幕.笔段式液晶屏.段码液晶显示屏.段式LCD.笔段式LCD等. 如下图,每个数字都由一个七段组件组成. 七段显示器总共可以呈现 128 种可能的状态: 我们要识别其中的0-9,如果用深度学习的方式有点小题大做,并且如果要进行应用还有很多前序工作需要进行,比如要确认识别什么设备的

  • Python绘制七段数码管实例代码

    七段数码管(seven-segmentindicator)由7段数码管拼接而成,每段有亮或不亮两种情况,改进型的七段数码管还包括一个小数点位置 绘制模式: input:输入当前日期的数字形式 process:根据每个数字绘制七段数码管表示 output:绘制当前日期的七段数码管表示 示例一: #DrawSevenSegDisplay.py import turtle, datetime def drawLine(draw): #绘制单段数码管 turtle.pendown() if draw e

  • python实现七段数码管和倒计时效果

    8是典型的七段数码管的例子,因为刚好七段都有经过,这里我写的代码是从1开始右转. 这是看Mooc视频写的一个关于用七段数码管显示当前时间 # -*-coding:utf-8 -*- import turtle as t import time def drawGap(): t.penup() t.fd(5) def drawLine(draw): drawGap() t.pendown() if draw else t.penup() t.fd(40) t.right(90) def drawD

  • OpenCV Python身份证信息识别过程详解

    目录 前置环境 识别过程 身份证区域查找 原始图像 灰度处理 中值滤波 二值处理 边缘检测 边缘膨胀 轮廓检测 轮廓排序 透视变换 固定图像大小 检测身份证文本位置 极度膨胀 轮廓查找文本区域 筛选出文本区域 对文本区域进行排序 识别文本 结语 代码 本篇文章使用OpenCV-Python和CnOcr来实现身份证信息识别的案例.想要识别身份证中的文本信息,总共分为三大步骤:一.通过预处理身份证区域检测查找:二.身份证文本信息提取:三.身份证文本信息识别.下面来看一下识别的具体过程CnOcr官网.

  • Opencv+Python识别PCB板图片的步骤

    任务要求: 基于模板匹配算法识别PCB板型号 使用工具: Python3.OpenCV 使用模板匹配算法,模板匹配是一种最原始.最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,模板匹配具有自身的局限性,主要表现在它只能进行平行移动,即原图像中的匹配目标不能发生旋转或大小变化. 事先准备好待检测PCB与其对应的模板: 子模版: 基本流程如下: 1.在整个图像区域发现与给定子图像匹配的小块区域 2.选取模板图像T(给定的子图像) 3.另外需要一个待检测的图像--源图

  • opencv python 对指针仪表读数识别的两种方式

    我尝试了两种方式 用opencv 对指针仪表进行读数识别, 1. 先模板匹配,然后边缘检测 + 霍夫直线 2. 按轮廓大小过滤,然后边缘检测 + 霍夫直线 两种方式对光线都非常敏感 其中第一种的应用范围更广,背景复杂一点也能识别到 个人比较喜欢这种方式 第二种的限制多一点,对背景.光线条件要求比较高 对于固定位置,且明暗变化不大的情况下,这种方式还是很有效的 先说第一个方案,第二个方式就不说了 第一种方式:模板匹配,然后边缘检测 + 霍夫直线 if __name__ == "__main__&q

  • Python+OpenCV实现图片及视频中选定区域颜色识别

    近期,需要实现检测摄像头中指定坐标区域内的主体颜色,通过查阅大量相关的内容,最终实现代码及效果如下,具体的实现步骤在代码中都详细注释,代码还可以进一步优化,但提升有限. 主要实现过程:按不同颜色的取值范围,对图像进行循环遍历,转换为灰度图,将本次遍历的颜色像素转换为白色,对白色部分进行膨胀处理,使其更加连续,计算白色部分外轮廓包围的面积累加求和,比较每种颜色围起来面积,保存最大值及其颜色,所有颜色遍历完后,返回最大值对应的颜色,显示在图像上 如果有类似的颜色识别的任务,可参考以下代码修改后实现具

  • 基于python+opencv调用电脑摄像头实现实时人脸眼睛以及微笑识别

    本文教大家调用电脑摄像头进行实时人脸+眼睛识别+微笑识别,供大家参考,具体内容如下 一.调用电脑摄像头进行实时人脸+眼睛识别 # 调用电脑摄像头进行实时人脸+眼睛识别,可直接复制粘贴运行 import cv2 face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades+'haarcascade_frontalface_default.xml') eye_cascade = cv2.CascadeClassifier(cv2.data.ha

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • Python判断字符串是否为字母或者数字(浮点数)的多种方法

    str为字符串s为字符串 str.isalnum() 所有字符都是数字或者字母 str.isalpha() 所有字符都是字母 str.isdigit() 所有字符都是数字 str.isspace() 所有字符都是空白字符.t.n.r 检查字符串是数字/浮点数方法 float部分 >> float('Nan') nan >> float('Nan') nan >> float('nan') nan >> float('INF') inf >> fl

随机推荐