Python使用Plotly绘制常见5种动态交互式图表

目录
  • 启动
  • 动画
  • 太阳图
  • 平行类别
  • 平行坐标图
  • 量表图和指示器

数据可以帮助我们描述这个世界、阐释自己的想法和展示自己的成果,但如果只有单调乏味的文本和数字,我们却往往能难抓住观众的眼球。而很多时候,一张漂亮的可视化图表就足以胜过千言万语。本文将介绍 5 种基于 Plotly 的可视化方法,你会发现,原来可视化不仅可用直方图和箱形图,还能做得如此动态好看甚至可交互。

对数据科学家来说,讲故事是一个至关重要的技能。为了表达我们的思想并且说服别人,我们需要有效的沟通。而漂漂亮亮的可视化是完成这一任务的绝佳工具。

本文将介绍 5 种非传统的可视化技术,可让你的数据故事更漂亮和更有效。这里将使用 Python 的 Plotly 图形库(也可通过 R 使用),让你可以毫不费力地生成动画图表和交互式图表。

那么,Plotly 有哪些好处?Plotly 的整合能力很强:可与 Jupyter Notebook 一起使用,可嵌入网站,并且完整集成了 Dash——一种用于构建仪表盘和分析应用的出色工具。

启动

如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:

pip install plotly

安装完成后,就开始使用吧!

动画

在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:

代码如下:

import plotly.express as px
from vega_datasets import data
df = data.disasters()
df = df[df.Year > 1990]
fig = px.bar(df,
             y="Entity",
             x="Deaths",
             animation_frame="Year",
             orientation='h',
             range_x=[0, df.Deaths.max()],
             color="Entity")
# improve aesthetics (size, grids etc.)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor='rgba(0,0,0,0)',
                  plot_bgcolor='rgba(0,0,0,0)',
                  title_text='Evolution of Natural Disasters',
                  showlegend=False)
fig.update_xaxes(title_text='Number of Deaths')
fig.update_yaxes(title_text='')
fig.show()

只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:

import plotly.express as px
df = px.data.gapminder()
fig = px.scatter(
    df,
    x="gdpPercap",
    y="lifeExp",
    animation_frame="year",
    size="pop",
    color="continent",
    hover_name="country",
    log_x=True,
    size_max=55,
    range_x=[100, 100000],
    range_y=[25, 90],

    #   color_continuous_scale=px.colors.sequential.Emrld
)
fig.update_layout(width=1000,
                  height=800,
                  xaxis_showgrid=False,
                  yaxis_showgrid=False,
                  paper_bgcolor='rgba(0,0,0,0)',
                  plot_bgcolor='rgba(0,0,0,0)')

太阳图

太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。

假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。

这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。

import plotly.graph_objects as go
import plotly.express as px
import numpy as np
import pandas as pd
df = px.data.tips()
fig = go.Figure(go.Sunburst(
    labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],
    parents=["", "", "Female", "Female", 'Male', 'Male'],
    values=np.append(
        df.groupby('sex').tip.mean().values,
        df.groupby(['sex', 'time']).tip.mean().values),
    marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
                                 plot_bgcolor='rgba(0,0,0,0)'))

fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text='Tipping Habbits Per Gender, Time and Day')
fig.show()

现在我们向这个层次结构再添加一层:

为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。

import plotly.graph_objects as go
import plotly.express as px
import pandas as pd
import numpy as np
df = px.data.tips()
fig = go.Figure(go.Sunburst(labels=[
    "Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',
    'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri  ', 'Sat  ', 'Sun  ', 'Fri   ', 'Thu   '
],
                            parents=[
                                "", "", "Female", "Female", 'Male', 'Male',
                                'Dinner', 'Dinner', 'Dinner', 'Dinner',
                                'Lunch', 'Lunch', 'Dinner ', 'Dinner ',
                                'Dinner ', 'Lunch ', 'Lunch '
                            ],
                            values=np.append(
                                np.append(
                                    df.groupby('sex').tip.mean().values,
                                    df.groupby(['sex',
                                                'time']).tip.mean().values,
                                ),
                                df.groupby(['sex', 'time',
                                            'day']).tip.mean().values),
                            marker=dict(colors=px.colors.sequential.Emrld)),
                layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',
                                 plot_bgcolor='rgba(0,0,0,0)'))
fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),
                  title_text='Tipping Habbits Per Gender, Time and Day')

fig.show()

平行类别

另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。

代码如下:

import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_categories(
    df,
    dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],
    color="Genre_id",
    color_continuous_scale=px.colors.sequential.Emrld,
)
fig.show()

平行坐标图

平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。

代码如下:

 import plotly.express as px
from vega_datasets import data
import pandas as pd
df = data.movies()
df = df.dropna()
df['Genre_id'] = df.Major_Genre.factorize()[0]
fig = px.parallel_coordinates(
    df,
    dimensions=[
        'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',
        'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'
    ],
    color='IMDB_Rating',
    color_continuous_scale=px.colors.sequential.Emrld)
fig.show()

量表图和指示器

量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。

指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。

 import plotly.graph_objects as go
fig = go.Figure(go.Indicator(
    domain = {'x': [0, 1], 'y': [0, 1]},
    value = 4.3,
    mode = "gauge+number+delta",
    title = {'text': "Success Metric"},
    delta = {'reference': 3.9},
    gauge = {'bar': {'color': "lightgreen"},
        'axis': {'range': [None, 5]},
             'steps' : [
                 {'range': [0, 2.5], 'color': "lightgray"},
                 {'range': [2.5, 4], 'color': "gray"}],
          }))
fig.show()

到此这篇关于Python使用Plotly绘制常见5种动态交互式图表的文章就介绍到这了,更多相关Python Plotly图表内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • python使用Plotly绘图工具绘制散点图、线形图

    今天在研究Plotly绘制散点图的方法,供大家参考,具体内容如下 使用Python3.6 + Plotly Plotly版本2.0.0 在开始之前先说说,还需要安装库Numpy,安装方法在我的另一篇博客中有写到:python3.6下Numpy库下载与安装图文教程 因为Plotly没有自己独立的线性图形函数,所以把线性图形与散点图形全部用一个函数实现 这个函数是Scatter函数 下面举几个简单的例子 先画一个纯散点图,代码如下: import plotly import plotly.graph

  • 基于python plotly交互式图表大全

    plotly可以制作交互式图表,直接上代码: import plotly.offline as py from plotly.graph_objs import Scatter, Layout import plotly.graph_objs as go py.init_notebook_mode(connected=True) import pandas as pd import numpy as np In [412]: #读取数据 df=pd.read_csv('seaborn.csv',

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • python使用Plotly绘图工具绘制气泡图

    今天来讲讲如何使用Python 绘图工具,Plotly来绘制气泡图. 气泡图的实现方法类似散点图的实现.修改散点图中点的大小,就变成气泡图. 实现代码如下: import plotly as py import plotly.graph_objs as go pyplt = py.offline.plot trace0 = go.Scatter( x=[1, 2, 3, 4, 5, 6, 7], y=[8, 10, 12, 14, 16, 18, 20], mode='markers', mar

  • 详解利用python-highcharts库绘制交互式可视化图表

    目录 python-highcharts库的简单介绍 python-highcharts具体案例 总结 今天小编给大家推荐一个超强交互式可视化绘制工具-python-highcharts,熟悉HightCharts绘图软件的小伙伴对这个不会陌生,python-highcharts就是使用Python进行Highcharts项目绘制,简单的说就是实现Python和Javascript之间的简单转换层,话不多说,我们直接进行介绍,具体包括以下几个方面: python-highcharts库的简单介绍

  • Python使用Plotly绘制常见5种动态交互式图表

    目录 启动 动画 太阳图 平行类别 平行坐标图 量表图和指示器 数据可以帮助我们描述这个世界.阐释自己的想法和展示自己的成果,但如果只有单调乏味的文本和数字,我们却往往能难抓住观众的眼球.而很多时候,一张漂亮的可视化图表就足以胜过千言万语.本文将介绍 5 种基于 Plotly 的可视化方法,你会发现,原来可视化不仅可用直方图和箱形图,还能做得如此动态好看甚至可交互. 对数据科学家来说,讲故事是一个至关重要的技能.为了表达我们的思想并且说服别人,我们需要有效的沟通.而漂漂亮亮的可视化是完成这一任务

  • python通过Matplotlib绘制常见的几种图形(推荐)

    目录 python通过Matplotlib绘制常见的几种图形 一.使用matplotlib对几种常见的图形进行绘制 1.柱状图 2.水平绘制柱状图 3.多个柱状图 4.叠加型柱状图 5.散点图 6.气泡图 7.直方图 8.箱线图 二.添加文字描述 1.文字描述一 2.文字描述二 三.多个图形描绘 subplots 四.使用Pandas 绘图 1.散点图 2.绘制柱状图 3.堆积的柱状图 4.水平的柱状图 5.直方图 6.箱线图 python通过Matplotlib绘制常见的几种图形 一.使用ma

  • Python matplotlib plotly绘制图表详解

    目录 一.整理数据 二.折线图 三.散点图 四.饼图 五.柱形图 六.点图(设置多个go对象) 七.2D密度图 八.简单3D图 一.整理数据 以300部电影作为数据源 import pandas as pd cnboo=pd.read_excel("cnboNPPD1.xls") cnboo import seaborn as sns import numpy as np import matplotlib as mpl from matplotlib import pyplot as

  • Python利用plotly绘制正二十面体详解

    目录 顶点 棱 实现正二十面体 plotly 的 Python 软件包是一个开源的代码库,它基于 plot.js,而后者基于 d3.js.我们实际使用的则是一个对 plotly 进行封装的库,名叫 cufflinks,能让你更方便地使用 plotly 和 Pandas 数据表协同工作. 一言以蔽之,plotly是一款擅长交互的Python绘图库,下面就初步使用一下这个库的三维绘图功能.此前曾经用matplotlib画了正二十面体和足球:Python绘制正二十面体:画足球,这次用plotly复现一

  • 一文教会你用Python绘制动态可视化图表

    目录 前言 安装模块 可视化动态图 太阳图 指针图 桑基图 平行坐标图 总结 前言 对数据科学家来说,讲故事是一个至关重要的技能.为了表达我们的思想并且说服别人,我们需要有效的沟通.而漂漂亮亮的可视化是完成这一任务的绝佳工具. 本文将介绍5种非传统的可视化技术,可让你的数据故事更漂亮和更有效.这里将使用Python的Plotly图形库,让你可以毫不费力地生成动画图表和交互式图表. 安装模块 如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装: pip install plotl

  • 详解Python使用Plotly绘图工具,绘制甘特图

    今天来讲一下如何使用Python 的绘图工具Plotly来绘制甘特图的方法 甘特图大家应该了解熟悉,就是通过条形来显示项目的进度.时间安排等相关情况的. 我们今天来学习一下,如何使用ployly来绘制甘特图 绘制甘特图的函数为Plotly.figure_factoryz中create_gantt方法 通过参数事件Task,开始Start,结束Finish的时间的数据来绘制甘特图 import plotly as py import plotly.figure_factory as ff pypl

  • python使用Plotly绘图工具绘制柱状图

    本文实例为大家分享了python使用Plotly绘图工具绘制柱状图的具体代码,供大家参考,具体内容如下 使用Plotly绘制基本的柱状图,需要用到的函数是graph_objs 中 Bar函数 通过参数,可以设置柱状图的样式. 通过barmod进行设置可以绘制出不同类型的柱状图出来. 我们先来实现一个简单的柱状图: # -*- coding: utf-8 -*- import plotly as py import plotly.graph_objs as go pyplt = py.offlin

  • python用plotly实现绘制局部放大图

    目录 最终效果展示 实现思路 导入库 随机生成一些数据 封装绘图代码 开始绘制 总结 最终效果展示 实现思路 在绘图区域插入一个嵌入图,嵌入图与原图的绘画保持一致,通过限制嵌入图的x轴和y轴的显示范围,达到缩放的效果,并在原图上绘画一个矩形框,以凸显缩放的区域,最后通过两条直线凸显缩放关系. 导入库 import plotly.io as pio import plotly.graph_objects as go import pandas as pd import numpy as np #

  • 如何利用 Python 绘制动态可视化图表

    目录 一.安装相关的模块 二.gif和matplotlib的结合 三.gif和plotly的结合 四.matplotlib多子图动态可视化 五.动态气泡图 一.安装相关的模块 首先第一步的话我们需要安装相关的模块,通过pip命令来安装 pip install gif 另外由于gif模块之后会被当做是装饰器放在绘制可视化图表的函数上,主要我们依赖的还是Python当中绘制可视化图表的matplotlib.plotly.以及altair这些模块,因此我们还需要下面这几个库 pip install "

随机推荐