keras K.function获取某层的输出操作

如下所示:

from keras import backend as K
from keras.models import load_model

models = load_model('models.hdf5')
image=r'image.png'
images=cv2.imread(r'image.png')
image_arr = process_image(image, (224, 224, 3))
image_arr = np.expand_dims(image_arr, axis=0)
layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output])
f1 = layer_1([image_arr])[0]

加载训练好并保存的网络模型

加载数据(图像),并将数据处理成array形式

指定输出层

将处理后的数据输入,然后获取输出

其中,K.function有两种不同的写法:

1. 获取名为layer_name的层的输出

layer_1 = K.function([base_model.get_input_at(0)], [base_model.get_layer('layer_name').output])
#指定输出层的名称

2. 获取第n层的输出

layer_1 = K.function([model.get_input_at(0)], [model.layers[5].output])
#指定输出层的序号(层号从0开始)

另外,需要注意的是,书写不规范会导致报错:

报错:

TypeError: inputs to a TensorFlow backend function should be a list or tuple

将该句:

f1 = layer_1(image_arr)[0]

修改为:

f1 = layer_1([image_arr])[0]

补充知识:keras.backend.function()

如下所示:

def function(inputs, outputs, updates=None, **kwargs):
 """Instantiates a Keras function.
 Arguments:
   inputs: List of placeholder tensors.
   outputs: List of output tensors.
   updates: List of update ops.
   **kwargs: Passed to `tf.Session.run`.
 Returns:
   Output values as Numpy arrays.
 Raises:
   ValueError: if invalid kwargs are passed in.
 """
 if kwargs:
  for key in kwargs:
   if (key not in tf_inspect.getargspec(session_module.Session.run)[0] and
     key not in tf_inspect.getargspec(Function.__init__)[0]):
    msg = ('Invalid argument "%s" passed to K.function with Tensorflow '
        'backend') % key
    raise ValueError(msg)
 return Function(inputs, outputs, updates=updates, **kwargs)

这是keras.backend.function()的源码。其中函数定义开头的注释就是官方文档对该函数的解释。

我们可以发现function()函数返回的是一个Function对象。下面是Function类的定义。

class Function(object):
 """Runs a computation graph.
 Arguments:
   inputs: Feed placeholders to the computation graph.
   outputs: Output tensors to fetch.
   updates: Additional update ops to be run at function call.
   name: a name to help users identify what this function does.
 """

 def __init__(self, inputs, outputs, updates=None, name=None,
        **session_kwargs):
  updates = updates or []
  if not isinstance(inputs, (list, tuple)):
   raise TypeError('`inputs` to a TensorFlow backend function '
           'should be a list or tuple.')
  if not isinstance(outputs, (list, tuple)):
   raise TypeError('`outputs` of a TensorFlow backend function '
           'should be a list or tuple.')
  if not isinstance(updates, (list, tuple)):
   raise TypeError('`updates` in a TensorFlow backend function '
           'should be a list or tuple.')
  self.inputs = list(inputs)
  self.outputs = list(outputs)
  with ops.control_dependencies(self.outputs):
   updates_ops = []
   for update in updates:
    if isinstance(update, tuple):
     p, new_p = update
     updates_ops.append(state_ops.assign(p, new_p))
    else:
     # assumed already an op
     updates_ops.append(update)
   self.updates_op = control_flow_ops.group(*updates_ops)
  self.name = name
  self.session_kwargs = session_kwargs

 def __call__(self, inputs):
  if not isinstance(inputs, (list, tuple)):
   raise TypeError('`inputs` should be a list or tuple.')
  feed_dict = {}
  for tensor, value in zip(self.inputs, inputs):
   if is_sparse(tensor):
    sparse_coo = value.tocoo()
    indices = np.concatenate((np.expand_dims(sparse_coo.row, 1),
                 np.expand_dims(sparse_coo.col, 1)), 1)
    value = (indices, sparse_coo.data, sparse_coo.shape)
   feed_dict[tensor] = value
  session = get_session()
  updated = session.run(
    self.outputs + [self.updates_op],
    feed_dict=feed_dict,
    **self.session_kwargs)
  return updated[:len(self.outputs)]

所以,function函数利用我们之前已经创建好的comuptation graph。遵循计算图,从输入到定义的输出。这也是为什么该函数经常用于提取中间层结果。

以上这篇keras K.function获取某层的输出操作就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras获得某一层或者某层权重的输出实例

    一个例子: print("Loading vgg19 weights...") vgg_model = VGG19(include_top=False, weights='imagenet') from_vgg = dict() # 因为模型定义中的layer的名字与原始vgg名字不同,所以需要调整 from_vgg['conv1_1'] = 'block1_conv1' from_vgg['conv1_2'] = 'block1_conv2' from_vgg['conv2_1']

  • keras获得model中某一层的某一个Tensor的输出维度教程

    获得某层tensor的输出维度 代码如下所示: from keras import backend as K @wraps(Conv2D) def my_conv(*args,**kwargs): new_kwargs={'kernel_regularizer':l2(5e-6)} new_kwargs['padding']='valid' #'same' new_kwargs['strides']=(2,2) if kwargs.get('strides')==(2,2) else (1,1)

  • keras小技巧——获取某一个网络层的输出方式

    前言: keras默认提供了如何获取某一个层的某一个节点的输出,但是没有提供如何获取某一个层的输出的接口,所以有时候我们需要获取某一个层的输出,则需要自己编写代码,但是鉴于keras高层封装的特性,编写起来实际上很简单,本文提供两种常见的方法来实现,基于上一篇文章的模型和代码: keras自定义回调函数查看训练的loss和accuracy 一.模型加载以及各个层的信息查看 从前面的定义可知,参见上一篇文章,一共定义了8个网络层,定义如下: model.add(Convolution2D(filt

  • keras 获取某层的输入/输出 tensor 尺寸操作

    获取单输入尺寸,该层只被使用了一次. import keras from keras.layers import Input, LSTM, Dense, Conv2D from keras.models import Model a = Input(shape=(32, 32, 3)) b = Input(shape=(64, 64, 3)) conv = Conv2D(16, (3, 3), padding='same') conved_a = conv(a) # 到目前为止只有一个输入,以下

  • keras K.function获取某层的输出操作

    如下所示: from keras import backend as K from keras.models import load_model models = load_model('models.hdf5') image=r'image.png' images=cv2.imread(r'image.png') image_arr = process_image(image, (224, 224, 3)) image_arr = np.expand_dims(image_arr, axis=

  • keras 获取某层输出 获取复用层的多次输出实例

    官方文档很全面,搜索功能也很好.但是如果你想单独实现某个功能,根本无从搜寻.于是我写了这个笔记.从功能出发. 两个tensor经过一个layer实例会产生两个输出. a = Input(shape=(280, 256)) b = Input(shape=(280, 256)) lstm = LSTM(32) encoded_a = lstm(a) encoded_b = lstm(b) lstm.output 这个代码有错误,因为最后一行没有指定lstm这个layer实例的那个输出. >> A

  • 使用K.function()调试keras操作

    Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端.无论是Theano还是TensorFlow,都需要提前定义好网络的结构,也就是常说的"计算图". 在运行前需要对计算图编译,然后才能输出结果.那这里面主要有两个问题,第一是这个图结构在运行中不能任意更改,比如说计算图中有一个隐含层,神经元的数量是100,你想动态的修改这个隐含层神经元的数量那是不可以的:第二是调试困难,keras没有内置的调试工具,所以计算图的中间结果是很难看到的,一旦最终输出跟预

  • pytorch获取vgg16-feature层输出的例子

    实际应用时可能比较想获取VGG中间层的输出, 那么就可以如下操作: import numpy as np import torch from torchvision import models from torch.autograd import Variable import torchvision.transforms as transforms class CNNShow(): def __init__(self, model): self.model = model self.model

  • keras 使用Lambda 快速新建层 添加多个参数操作

    keras许多简单操作,都需要新建一个层,使用Lambda可以很好完成需求. # 额外参数 def normal_reshape(x, shape): return K.reshape(x,shape) output = Lambda(normal_reshape, arguments={'shape':(-1, image_seq, 1000)})(output) output = Lambda(lambda inp: K.mean(inp, axis=1), output_shape=(10

  • keras 模型参数,模型保存,中间结果输出操作

    我就废话不多说了,大家还是直接看代码吧~ ''' Created on 2018-4-16 ''' import keras from keras.models import Sequential from keras.layers import Dense from keras.models import Model from keras.callbacks import ModelCheckpoint,Callback import numpy as np import tflearn im

  • Keras设置以及获取权重的实现

    layer的两个函数: get_weights(), set_weights(weights). 详情请参考about-keras-layers. 补充知识:Keras层的共同函数 关于Keras层: 所有Keras层都有很多共同的函数: layer.get_weights(): # 以Numpy矩阵的形式返回层的权重. layer.set_weights(weights): # 从Numpy矩阵中设置层的权重(与get_weights的输出形状相同). layer.get_config():

  • Keras 数据增强ImageDataGenerator多输入多输出实例

    我就废话不多说了,大家还是直接看代码吧~ import os os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID" os.environ["CUDA_VISIBLE_DEVICES"]="" import sys import gc import time import cv2 import random import numpy as np import pandas as pd impo

随机推荐