python利用opencv实现SIFT特征提取与匹配

本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下

1、SIFT

1.1、sift的定义

SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述。这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子。

1.2、sift算法介绍

SIFT由David Lowe在1999年提出,在2004年加以完善 。SIFT在数字图像的特征描述方面当之无愧可称之为最红最火的一种,许多人对SIFT进行了改进,诞生了SIFT的一系列变种。SIFT已经申请了专利(所以现在opencv使用这个算法,需要低的版本)。

SIFT特征是基于物体上的一些局部外观的兴趣点而与影像的大小和旋转无关。对于光线、噪声、微视角改变的容忍度也相当高。基于这些特性,它们是高度显著而且相对容易撷取,在母数庞大的特征数据库中,很容易辨识物体而且鲜有误认。使用SIFT特征描述对于部分物体遮蔽的侦测率也相当高,甚至只需要3个以上的SIFT物体特征就足以计算出位置与方位。在现今的电脑硬件速度下和小型的特征数据库条件下,辨识速度可接近即时运算。SIFT特征的信息量大,适合在海量数据库中快速准确匹配。

SIFT算法具有如下一些特点:

1)SIFT特征是图像的局部特征,其对旋转、尺度缩放、亮度变化保持不变性,对视角变化、仿射变换、噪声也保持一定程度的稳定性;
2)区分性(Distinctiveness)好,信息量丰富,适用于在海量特征数据库中进行快速、准确的匹配;
3)多量性,即使少数的几个物体也可以产生大量的SIFT特征向量;
4)高速性,经优化的SIFT匹配算法甚至可以达到实时的要求;
5)可扩展性,可以很方便的与其他形式的特征向量进行联合。

1.3、特征检测

SIFT特征检测主要包括以下4个基本步骤:
1)尺度空间极值检测:搜索所有尺度上的图像位置。通过高斯微分函数来识别潜在的对于尺度和旋转不变的兴趣点。
2)关键点定位:在每个候选的位置上,通过一个拟合精细的模型来确定位置和尺度。关键点的选择依据于它们的稳定程度。
3)方向确定:基于图像局部的梯度方向,分配给每个关键点位置一个或多个方向。所有后面的对图像数据的操作都相对于关键点的方向、尺度和位置进行变换,从而提供对于这些变换的不变性。
4)关键点描述:在每个关键点周围的邻域内,在选定的尺度上测量图像局部的梯度。这些梯度被变换成一种表示,这种表示允许比较大的局部形状的变形和光照变化。

1.4、特征匹配

SIFT特征匹配主要包括2个阶段:

第一阶段:SIFT特征的生成,即从多幅图像中提取对尺度缩放、旋转、亮度变化无关的特征向量。
第二阶段:SIFT特征向量的匹配。

SIFT特征的生成一般包括以下几个步骤:

1)构建尺度空间,检测极值点,获得尺度不变性。
2)特征点过滤并进行精确定位。
3)为特征点分配方向值。
4)生成特征描述子。以特征点为中心取16×16的邻域作为采样窗口,将采样点与特征点的相对方向通过高斯加权后归入包含8个bin的方向直方图,最后获得4×4×8的128维特征描述子。当两幅图像的SIFT特征向量生成以后,下一步就可以采用关键点特征向量的欧式距离来作为两幅图像中关键点的相似性判定度量。取图1的某个关键点,通过遍历找到图像2中的距离最近的两个关键点。在这两个关键点中,如果最近距离除以次近距离小于某个阈值,则判定为一对匹配点。

2、python实现

2.1、准备工作

由于SIFT已经申请了专利,所以在高版本的opencv中,会出现错误,以前是opencv4.0.1,然后安装版本为opencv3.4.2.16
卸载以前的版本(低版本,可以试试直接运行代码):

pip uninstall opencv-python
pip uninstall opencv-contrib-python

用命令行(CMD),采用pip方式:

pip install opencv_python==3.4.2.16
pip install opencv-contrib-python==3.4.2.16

2.2、代码实现

#!/usr/bin/env python3
# -*- coding:utf-8 -*-
u'''
Created on 2019年6月14日
@author: wuluo
'''
__author__ = 'wuluo'
__version__ = '1.0.0'
__company__ = u'重庆交大'
__updated__ = '2019-06-14'
from matplotlib import pyplot as plt
from imagedt.decorator import time_cost
import cv2
print('cv version: ', cv2.__version__)

def bgr_rgb(img):
 (r, g, b) = cv2.split(img)
 return cv2.merge([b, g, r])

def orb_detect(image_a, image_b):
 # feature match
 orb = cv2.ORB_create()
 kp1, des1 = orb.detectAndCompute(image_a, None)
 kp2, des2 = orb.detectAndCompute(image_b, None)
 # create BFMatcher object
 bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
 # Match descriptors.
 matches = bf.match(des1, des2)
 # Sort them in the order of their distance.
 matches = sorted(matches, key=lambda x: x.distance)
 # Draw first 10 matches.
 img3 = cv2.drawMatches(image_a, kp1, image_b, kp2,
    matches[:100], None, flags=2)
 return bgr_rgb(img3)

@time_cost
def sift_detect(img1, img2, detector='surf'):
 if detector.startswith('si'):
 print("sift detector......")
 sift = cv2.xfeatures2d.SURF_create()
 else:
 print("surf detector......")
 sift = cv2.xfeatures2d.SURF_create()
 # find the keypoints and descriptors with SIFT
 kp1, des1 = sift.detectAndCompute(img1, None)
 kp2, des2 = sift.detectAndCompute(img2, None)
 # BFMatcher with default params
 bf = cv2.BFMatcher()
 matches = bf.knnMatch(des1, des2, k=2)
 # Apply ratio test
 good = [[m] for m, n in matches if m.distance < 0.5 * n.distance]
 # cv2.drawMatchesKnn expects list of lists as matches.
 img3 = cv2.drawMatchesKnn(img1, kp1, img2, kp2, good, None, flags=2)
 return bgr_rgb(img3)

if __name__ == "__main__":
 # load image
 image_a = cv2.imread('G:/2018and2019two/qianrushi/wuluo1.jpg')#绝对路径
 image_b = cv2.imread('G:/2018and2019two/qianrushi/wuluo2.jpg')
 # ORB
 # img = orb_detect(image_a, image_b)
 # SIFT or SURF
 img = sift_detect(image_a, image_b)
 plt.imshow(img)
 plt.show()

2.3、运行结果

采用同一张图片:

两张有重叠部分的代码:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python + OpenCV 实现LBP特征提取的示例代码

    背景 看了些许的纹理特征提取的paper,想自己实现其中部分算法,看看特征提取之后的效果是怎样 运行环境 Mac OS Python3.0 Anaconda3(集成了很多包,浏览器界面编程,清爽) 步骤 导入包 from skimage.transform import rotate from skimage.feature import local_binary_pattern from skimage import data, io,data_dir,filters, feature fro

  • python多进程读图提取特征存npy

    本文实例为大家分享了python多进程读图提取特征存npy的具体代码,供大家参考,具体内容如下 import multiprocessing import os, time, random import numpy as np import cv2 import os import sys from time import ctime import tensorflow as tf image_dir = r"D:/sxl/处理图片/汉字分类/train10/" #图像文件夹路径 da

  • 使用python进行文本预处理和提取特征的实例

    如下所示: <strong><span style="font-size:14px;">文本过滤</span></strong> result = re.sub(r'[^\u4e00-\u9fa5,.?!,.::" "' '( )< >〈 〉]', "", content)#只保留中文和标点 result = re.sub(r'[^\u4e00-\u9fa5]', ""

  • python实现LBP方法提取图像纹理特征实现分类的步骤

    题目描述 这篇博文是数字图像处理的大作业. 题目描述:给定40张不同风格的纹理图片,大小为512*512,要求将每张图片分为大小相同的9块,利用其中的5块作为训练集,剩余的4块作为测试集,构建适当的模型实现图片的分类. 图片如下图所示: 分析:由于数据集太小,所以神经网络模型并不适合此类的图像处理.就需要寻找方法提取图像的纹理信息.本文采用LBP的方法提取图像的纹理信息,然后转化成直方图作为图像的特征,然后使用多分类的方法进行分类. 环境 python2.7,jupyter notebook,a

  • 使用python实现语音文件的特征提取方法

    概述 语音识别是当前人工智能的比较热门的方向,技术也比较成熟,各大公司也相继推出了各自的语音助手机器人,如百度的小度机器人.阿里的天猫精灵等.语音识别算法当前主要是由RNN.LSTM.DNN-HMM等机器学习和深度学习技术做支撑.但训练这些模型的第一步就是将音频文件数据化,提取当中的语音特征. MP3文件转化为WAV文件 录制音频文件的软件大多数都是以mp3格式输出的,但mp3格式文件对语音的压缩比例较重,因此首先利用ffmpeg将转化为wav原始文件有利于语音特征的提取.其转化代码如下: fr

  • python利用小波分析进行特征提取的实例

    如下所示: #利用小波分析进行特征分析 #参数初始化 inputfile= 'C:/Users/Administrator/Desktop/demo/data/leleccum.mat' #提取自Matlab的信号文件 from scipy.io import loadmat #mat是MATLAB专用格式,需要用loadmat读取它 mat = loadmat(inputfile) signal = mat['leleccum'][0] import pywt #导入PyWavelets co

  • Python实现的特征提取操作示例

    本文实例讲述了Python实现的特征提取操作.分享给大家供大家参考,具体如下: # -*- coding: utf-8 -*- """ Created on Mon Aug 21 10:57:29 2017 @author: 飘的心 """ #过滤式特征选择 #根据方差进行选择,方差越小,代表该属性识别能力很差,可以剔除 from sklearn.feature_selection import VarianceThreshold x=[[100

  • Python提取频域特征知识点浅析

    在多数的现代语音识别系统中,人们都会用到频域特征.梅尔频率倒谱系数(MFCC),首先计算信号的功率谱,然后用滤波器和离散余弦变换的变换来提取特征.本文重点介绍如何提取MFCC特征. 首先创建有一个Python文件,并导入库文件:     from scipy.io import wavfile     from python_speech_features import mfcc, logfbank     import matplotlib.pylab as plt1.首先创建有一个Pytho

  • python实现图片处理和特征提取详解

    这是一张灵异事件图...开个玩笑,这就是一张普通的图片. 毫无疑问,上面的那副图画看起来像一幅电脑背景图片.这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球.然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存储在存储器上的或者去想这些图片是如何通过各种变化生成的. 在这篇文章中,我将带着你了解一些基本的图片特征处理.data massaging 依然是一样的:特征提取,但是这里我们还需要对跟多的密集数据进行处理,但同时数据清理是在数据库.表.文本等中进行.这是如何

  • 基于MATLAB和Python实现MFCC特征参数提取

    1.MFCC概述 在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale FrequencyCepstral Coefficients,简称MFCC).根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度.从200Hz到5000Hz的语音信号对语音的清晰度影响较大.两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,

随机推荐