Python实现数据库编程方法详解

本文实例讲述了Python实现数据库编程方法。分享给大家供大家参考。具体分析如下:

用PYTHON语言进行数据库编程, 至少有六种方法可供采用. 我在实际项目中采用,不但功能强大,而且方便快捷.以下是我在工作和学习中经验总结.

方法一:使用DAO (Data Access Objects)

这个第一种方法可能会比较过时啦.不过还是非常有用的. 假设你已经安装好了PYTHONWIN,现在开始跟我上路吧……

找到工具栏上ToolsàCOM MakePy utilities,你会看到弹出一个Select Library的对话框, 在列表中选择'Microsoft DAO 3.6 Object Library'(或者是你所有的版本).

现在实现对数据的访问:

#实例化数据库引擎
import win32com.client
engine = win32com.client.Dispatch("DAO.DBEngine.35")
#实例化数据库对象,建立对数据库的连接
db = engine.OpenDatabase(r"c:/temp/mydb.mdb")

现在你有了数据库引擎的连接,也有了数据库对象的实例.现在就可以打开一个recordset了. 假设在数据库中已经有一个表叫做 'customers'. 为了打开这个表,对其中数据进行处理,我们使用下面的语法:

rs = db.OpenRecordset("customers")
#可以采用SQL语言对数据集进行操纵
rs = db.OpenRecordset("select * from customers where state = 'OH'")

你也可以采用DAO的execute方法. 比如这样:

db.Execute("delete * from customers where balancetype = 'overdue' and name = 'bill'")
#注意,删除的数据不能复原了J

EOF 等属性也是可以访问的, 因此你能写这样的语句:

while not rs.EOF:
 print rs.Fields("State").Value
 rs.MoveNext()

我最开始采用这个方法,感觉不错.

方法二:使用Python DB API,Python ODBC modules(you can use ODBC API directly, but maybe it is difficult for most beginner.)

为了在Python里面也能有通用的数据库接口,DB-SIG为我们提供了Python数据库.(欲知详情,访问DB-SIG的网站,http://www.python.org/sigs/db-sig/).   Mark

Hammond的win32扩展PythonWin里面包含了这些API的一个应用-odbc.pyd. 这个数据库API仅仅开放了一些有限的ODBC函数的功能(那不是它的目的),但是它使用起来很简单,而且在win32里面是免费的.

安装odbc.pyd的步骤如下:

1. 安装python软件包:

http://www.python.org/download/

2. 安装Mark Hammond的最新版本的python win32扩展 - PythonWin:

http://starship.python.net/crew/mhammond/

3. 安装必要的ODBC驱动程序,用ODBC管理器为你的数据库配置数据源等参数

你的应用程序将需要事先导入两个模块:

dbi.dll   - 支持各种各样的SQL数据类型,例如:日期-dates
   odbc.pyd – 编译产生的ODBC接口

下面有一个例子:

import dbi, odbc   # 导入ODBC模块
import time      # 标准时间模块
dbc = odbc.odbc(   # 打开一个数据库连接
    'sample/monty/spam'  # '数据源/用户名/密码'
    )
crsr = dbc.cursor()  # 产生一个cursor
crsr.execute(     # 执行SQL语言
    """
    SELECT country_id, name, insert_change_date
    FROM country
    ORDER BY name
    """
)
print 'Column descriptions:'  # 显示行描述
for col in crsr.description:
 print ' ', col
result = crsr.fetchall()    # 一次取出所有的结果
print '/nFirst result row:/n ', result[0]  # 显示结果的第一行
print '/nDate conversions:'  # 看看dbiDate对象如何?
date = result[0][-1]
fmt = '  %-25s%-20s'
print fmt % ('standard string:', str(date))
print fmt % ('seconds since epoch:', float(date))
timeTuple = time.localtime(date)
print fmt % ('time tuple:', timeTuple)
print fmt % ('user defined:', time.strftime('%d %B %Y', timeTuple))

下面是结果:

输出(output)

Column descriptions:
  ('country_id', 'NUMBER', 12, 10, 10, 0, 0)
  ('name', 'STRING', 45, 45, 0, 0, 0)
  ('insert_change_date', 'DATE', 19, 19, 0, 0, 1)
First result row:
  (24L, 'ARGENTINA', <DbiDate object at 7f1c80>)
Date conversions:
  standard string:   Fri Dec 19 01:51:53 1997
  seconds since epoch:  882517913.0
  time tuple:    (1997, 12, 19, 1, 51, 53, 4, 353, 0)
  user defined:    19 December 1997

大家也可以去http://www.python.org/windows/win32/odbc.html看看,那儿有两个Hirendra Hindocha写的例子,还不错.

注意, 这个例子中,结果值被转化为Python对象了.时间被转化为一个dbiDate对象.这里会有一点限制,因为dbiDate只能表示UNIX时间(1 Jan 1970 00:00:00 GMT)之后的时间.如果你想获得一个更早的时间,可能会出现乱码甚至引起系统崩溃.*_*

方法三: 使用 calldll模块

(Using this module, you can use ODBC API directly. But now the python version is 2.1, and I don't know if other version is compatible with it. 老巫:-)

Sam Rushing的calldll模块可以让Python调用任何动态连接库里面的任何函数,厉害吧?哈.其实,你能够通过直接调用odbc32.dll里面的函数操作ODBC.Sam提供了一个包装模块odbc.py,就是来做这个事情的.也有代码来管理数据源,安装ODBC,实现和维护数据库引擎 (Microsoft Access).在那些演示和例子代码中,还有一些让人侧目的好东东,比如cbdemo.py,有一个信息循环和窗口过程的Python函数!

[你可以到Sam's Python Software去找到calldll的相关连接,那儿还有其他好多有趣的东西]

下面是安装CALLDLL包的步骤:

1. 安装PYTHON软件包(到现在为止最多支持2.1版本)

2. 下载calldll-2001-05-20.zip:

ftp://squirl.nightmare.com/pub/python/python-ext/calldll-2001-05-20.zip

3. 在LIB路径下面创建一个新路径比如说:

c:/Program Files/Python/lib/caldll/

4. 在原目录下解压calldll.zip

5. 移动calldll/lib/中所有的文件到上面一个父目录(calldll)里面,删除子目录(lib)

6. 在CALL目录里面生成一个file __init__.py文件,象这样:

# File to allow this directory to be treated as a python 1.5
package.

7. 编辑calldll/odbc.py:

在"get_info_word"和"get_info_long"里面,改变"calldll.membuf"为"windll.membuf"

下面是一个怎么使用calldll的例子:

from calldll import odbc
dbc = odbc.environment().connection() # create connection
dbc.connect('sample', 'monty', 'spam') # connect to db
# alternatively, use full connect string:
# dbc.driver_connect('DSN=sample;UID=monty;PWD=spam')
print 'DBMS: %s %s/n' % ( # show DB information
  dbc.get_info(odbc.SQL_DBMS_NAME),
  dbc.get_info(odbc.SQL_DBMS_VER)
  )
result = dbc.query( # execute query & return results
  """
  SELECT country_id, name, insert_change_date
  FROM country
  ORDER BY name
  """
  )
print 'Column descriptions:' # show column descriptions
for col in result[0]:
  print ' ', col
print '/nFirst result row:/n ', result[1] # show first result row

output(输出)

DBMS: Oracle 07.30.0000
Column descriptions:
  ('COUNTRY_ID', 3, 10, 0, 0)
  ('NAME', 12, 45, 0, 0)
  ('INSERT_CHANGE_DATE', 11, 19, 0, 1)
First result row:
  ['24', 'ARGENTINA', '1997-12-19 01:51:53']

方法四: 使用ActiveX Data Object(ADO)

现在给出一个通过Microsoft's ActiveX Data Objects (ADO)来连接MS Access 2000数据库的实例.使用ADO有以下几个好处: 首先,与DAO相比,它能更快地连接数据库;其次,对于其他各种数据库(SQL Server, Oracle, MySQL, etc.)来说,ADO都是非常有效而方便的;再有,它能用于XML和文本文件和几乎其他所有数据,因此微软也将支持它比DAO久一些.

第一件事是运行makepy.尽管这不是必须的,但是它对于提高速度有帮助的.而且在PYTHONWIN里面运行它非常简单: 找到工具栏上ToolsàCOM MakePy utilities,你会看到弹出一个Select Library的对话框, 在列表中选择'Microsoft ActiveX Data Objects 2.5 Library ‘(或者是你所有的版本).

然后你需要一个数据源名Data Source Name [DSN] 和一个连接对象. [我比较喜欢使用DSN-Less 连接字符串 (与系统数据源名相比,它更能提高性能且优化代码)]
就MS Access来说,你只需要复制下面的DSN即可.对于其他数据库,或者象密码设置这些高级的功能来说,你需要去 [Control Panel控制面板 | 管理工具Administrative Tools | 数据源Data Sources (ODBC)]. 在那里,你可以设置一个系统数据源DSN. 你能够用它作为一个系统数据源名,或者复制它到一个字符串里面,来产生一个DSN-Less 的连接字符串. 你可以在网上搜索DSN-Less 连接字符串的相关资料. 好了,这里有一些不同数据库的DSN-Less连接字符串的例子:SQL Server, Access, FoxPro, Oracle , Oracle, Access, SQL Server, 最后是 MySQL.

>>> import win32com.client
>>> conn = win32com.client.Dispatch(r'ADODB.Connection')
>>> DSN = 'PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=C:/MyDB.mdb;'
>>> conn.Open(DSN)

经过上面的设置之后,就可以直接连接数据库了:

首要的任务是打开一个数据集/数据表

>>> rs = win32com.client.Dispatch(r'ADODB.Recordset')
>>> rs_name = 'MyRecordset'
>>> rs.Open('[' + rs_name + ']', conn, 1, 3)

[1和3是常数.代表adOpenKeyset 和adLockOptimistic.我用它作为默认值,如果你的情况不同的话,或许你应该改变一下.进一步的话题请参考ADO相关材料.]

打开数据表后,你可以检查域名和字段名等等

>>> flds_dict = {}
>>> for x in range(rs.Fields.Count):
...  flds_dict[x] = rs.Fields.Item(x).Name

字段类型和长度被这样返回A :

>>> print rs.Fields.Item(1).Type
202 # 202 is a text field
>>> print rs.Fields.Item(1).DefinedSize
50 # 50 Characters

现在开始对数据集进行操作.可以使用SQL语句INSERT INTO或者AddNew() 和Update()

>>> rs.AddNew()
>>> rs.Fields.Item(1).Value = 'data'
>>> rs.Update()

这些值也能够被返回:

>>> x = rs.Fields.Item(1).Value
>>> print x
'data'

因此如果你想增加一条新的记录,不必查看数据库就知道什么number 和AutoNumber 字段已经产生了

>>> rs.AddNew()
>>> x = rs.Fields.Item('Auto_Number_Field_Name').Value
# x contains the AutoNumber
>>> rs.Fields.Item('Field_Name').Value = 'data'
>>> rs.Update()

使用ADO,你也能得到数据库里面所有表名的列表:

>>> oCat = win32com.client.Dispatch(r'ADOX.Catalog')
>>> oCat.ActiveConnection = conn
>>> oTab = oCat.Tables
>>> for x in oTab:
...  if x.Type == 'TABLE':
...   print x.Name

关闭连接. 注意这里C是大写,然而关闭文件连接是小写的c.

>>> conn.Close()

前面提到,可以使用SQL语句来插入或者更新数据,这时我们直接使用一个连接对象.

>>> conn = win32com.client.Dispatch(r'ADODB.Connection')
>>> DSN = 'PROVIDER=Microsoft.Jet.OLEDB.4.0;DATA SOURCE=C:/MyDB.mdb;'
>>> sql_statement = "INSERT INTO [Table_Name]
([Field_1], [Field_2]) VALUES ('data1', 'data2')"
>>> conn.Open(DSN)
>>> conn.Execute(sql_statement)
>>> conn.Close()

最后一个例子经常被看作是ADO的难点.一般说来,想要知道一个表的RecordCount 的话,必须象这样一个一个地计算他们 :

>>> # See example 3 above for the set-up to this
>>> rs.MoveFirst()
>>> count = 0
>>> while 1:
...  if rs.EOF:
...   break
...  else:
...   count = count + 1
...   rs.MoveNext()

如果你也象上面那样些程序的话,非常底效不说,如果数据集是空的话,移动第一个记录的操作会产生一个错误.ADO提供了一个方法来纠正它.在打开数据集之前,设置CursorLocation 为3. 打开数据集之后,就可以知道recordcount了.

>>> rs.Cursorlocation = 3 # don't use parenthesis here
>>> rs.Open('SELECT * FROM [Table_Name]', conn) # be sure conn is open
>>> rs.RecordCount # no parenthesis here either
186

[再:3是常数]

这些只用到ADO的皮毛功夫,但对于从PYTHON来连接数据库,它还是应该有帮助的.

想更进一步学习的话,建议深入对象模型.下面是一些连接:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/ado270/htm/mdmscadoobjmod.asp
http://www.activeserverpages.ru/ADO/dadidx01_1.htm

(单步执行还可以,为何写为script就不行?老巫疑惑)

方法五:使用 mxODBC模块(在Windows和Unix下面都可以用,但是是商业化软件,要掏钱的.)下面是相关连接:

http://thor.prohosting.com/~pboddie/Python/mxODBC.html

http://www.egenix.com/files/python/mxODBC.html

方法六: 对具体的数据库使用特定的PYTHON模块

MySQL数据库à MySQLdb模块,下载地址为:

http://sourceforge.net/projects/mysql-python

PostgresSQL数据库àpsycopg模块

PostgresSQL的主页为: http://www.postgresql.org

Python/PostgresSQL模块下载地址: http://initd.org/software/psycopg

Oracle数据库àDCOracle模块下载地址: http://www.zope.org/Products/DCOracle

àcx_oracle模块下载地址: http://freshmeat.net/projects/cx_oracle/?topic_id=809%2C66

希望本文所述对大家的Python程序设计有所帮助。

(0)

相关推荐

  • Python MySQLdb模块连接操作mysql数据库实例

    mysql是一个优秀的开源数据库,它现在的应用非常的广泛,因此很有必要简单的介绍一下用python操作mysql数据库的方法.python操作数据库需要安装一个第三方的模块,在http://mysql-python.sourceforge.net/有下载和文档. 由于python的数据库模块有专门的数据库模块的规范,所以,其实不管使用哪种数据库的方法都大同小异的,这里就给出一段示范的代码: #-*- encoding: gb2312 -*- import os, sys, string impo

  • Python连接mssql数据库编码问题解决方法

    python一直对中文支持的不好,最近老遇到编码问题,而且几乎没有通用的方案来解决这个问题,但是对常见的方法都试过之后,发现还是可以解决的,下面总结了常用的支持中文的编码问题(这些方法中可能其中一个就能解决问题,也可能是多个组合). (1).首先,要保证文件的开头要加上编码设置来说明文件的编码 复制代码 代码如下: #encoding=utf-8 (2).然后,在连接数据的连接参数里加上字符集说明查询出的结果的编码,这个不加的后果可能是查询出的汉字字符都是问号 复制代码 代码如下: conn=p

  • Python操作MongoDB数据库PyMongo库使用方法

    引用PyMongo 复制代码 代码如下: >>> import pymongo 创建连接Connection 复制代码 代码如下: >>> import pymongo >>> conn = pymongo.Connection('localhost',27017) 或 复制代码 代码如下: >>> from pymongo import Connection >>> conn = Connection('local

  • Python bsddb模块操作Berkeley DB数据库介绍

    bsddb模块是用来操作bdb的模块,bdb是著名的Berkeley DB,它的性能非常好,mysql的存储后端引擎都支持bdb的方式.这里简单介绍一些关于bsddb的使用方法. bdb不同于一般的关系数据库,它存储的数据只能是以key和value组成的一对数据,使用就像python的字典一样,它不能直接表示多个字段,当要存储多个字段的数据时,只能把数据作为一个整体存放到value中. 使用bsddb面临的第一问题是使用什么数据访问方法,bdb支持四种:btree, hash, queue, r

  • python中使用mysql数据库详细介绍

    一.安装mysql 如果是windows 用户,mysql 的安装非常简单,直接下载安装文件,双击安装文件一步一步进行操作即可. Linux 下的安装可能会更加简单,除了下载安装包进行安装外,一般的linux 仓库中都会有mysql ,我们只需要通过一个命令就可以下载安装: Ubuntu\deepin 复制代码 代码如下: >>sudo apt-get install mysql-server >>Sudo apt-get install  mysql-client centOS/

  • Python中用memcached来减少数据库查询次数的教程

    本来我一直不知道怎么来更好地优化网页的性能,然后最近做python和php同类网页渲染速度比较时,意外地发现一个很简单很白痴但是 我一直没发现的好方法(不得不BS我自己):直接像某些php应用比如Discuz论坛那样,在生成的网页中打印出"本页面生成时间多少多少秒",然后在 不停地访问网页测试时,很直观地就能发现什么操作会导致瓶颈,怎样来解决瓶颈了. 于是我发现SimpleCD在 生成首页时,意外地竟然需要0.2秒左右,真真不能忍:对比Discuz论坛首页平均生成才0.02秒,而Dis

  • python连接MySQL数据库实例分析

    本文实例讲述了python连接MySQL数据库的方法.分享给大家供大家参考.具体实现方法如下: import MySQLdb conn = MySQLdb.connect(host="localhost", user="root", passwd="123456", db="test") cursor = conn.cursor() cursor.execute("select * from hard")

  • Python操作CouchDB数据库简单示例

    安装python couchDb库: https://pypi.python.org/pypi/CouchDB/0.10 连接服务器 复制代码 代码如下: >>> import couchdb >>> couch = couchdb.Server('http://example.com:5984/') 创建数据库 复制代码 代码如下: >>> db = couch.create('test') # 新建数据库 >>> db = cou

  • 在Python中编写数据库模块的教程

    在一个Web App中,所有数据,包括用户信息.发布的日志.评论等,都存储在数据库中.在awesome-python-app中,我们选择MySQL作为数据库. Web App里面有很多地方都要访问数据库.访问数据库需要创建数据库连接.游标对象,然后执行SQL语句,最后处理异常,清理资源.这些访问数据库的代码如果分散到各个函数中,势必无法维护,也不利于代码复用. 此外,在一个Web App中,有多个用户会同时访问,系统以多进程或多线程模式来处理每个用户的请求.假设以多线程为例,每个线程在访问数据库

  • Python实现数据库编程方法详解

    本文实例讲述了Python实现数据库编程方法.分享给大家供大家参考.具体分析如下: 用PYTHON语言进行数据库编程, 至少有六种方法可供采用. 我在实际项目中采用,不但功能强大,而且方便快捷.以下是我在工作和学习中经验总结. 方法一:使用DAO (Data Access Objects) 这个第一种方法可能会比较过时啦.不过还是非常有用的. 假设你已经安装好了PYTHONWIN,现在开始跟我上路吧-- 找到工具栏上ToolsàCOM MakePy utilities,你会看到弹出一个Selec

  • Python使用Asyncio进行web编程方法详解

    目录 前言 什么是同步编程 什么是异步编程 ayncio 版 Hello 程序 如何使用 asyncio 总结 前言 许多 Web 应用依赖大量的 I/O (输入/输出) 操作,比如从网站上下载图片.视频等内容:进行网络聊天或者针对后台数据库进行多次查询.数据库查询可能会耗费大量时间,尤其是在该数据库处于高负载或查询很复杂的情况下. Web 服务器可能需要同时处理数百或数千个请求. I/O 是指计算机的输入和输出设备,例如键盘.硬盘驱动器,以及最常见的网卡.这些操作等待用户输入或从基于 Web

  • 对Python通过pypyodbc访问Access数据库的方法详解

    看书上通过ODBC访问数据库的案例,想实践一下在Python 3.6.1中实现access2003数据库的链接,但是在导入odbc模块的时候出现了问题,后来查了一些资料就尝试着使用pypyodbc,最后成功了. 操作步骤: ①安装pypyodbc 目前Python安装通常使用steup.py或者pip工具,在python3.4之后的的版本都默认包含了pip,因此,这里推荐使用pip工具.在cmd中执行:pip install pypyodbc,耐心等待执行完成,pypyodbc模块就已经安装成功

  • 把JSON数据格式转换为Python的类对象方法详解(两种方法)

    JOSN字符串转换为自定义类实例对象 有时候我们有这种需求就是把一个JSON字符串转换为一个具体的Python类的实例,比如你接收到这样一个JSON字符串如下: {"Name": "Tom", "Sex": "Male", "BloodType": "A", "Hobbies": ["篮球", "足球"]} 我需要把这个转换为具

  • 使用zabbix监控oracle数据库的方法详解

    一.概述 zabbix是一款非常强大,同时也是应用最为广泛的开源监控软件,本文将给大家介绍如何利用zabbix+python监控oracle数据库. 二.环境介绍 以下是我安装的环境,实际部署时并不需要跟我的环境一样. 1. 监控机 Redhat Linux 6.5 + Zabbix server 3.4.10 + Python 2.6.6 (操作系统自带) + Oracle Client 11.2 (x86_64) 2. 被监控机 Oracle 11.2.0.4 三.选择监控方式 zabbix

  • 通过numba模块给Python代码提速的方法详解

    简介:numba是Anaconda公司开发的针对Python的开源JIT编译器,用于提供Python版CPU和GPU编程,速度比原生Python快数十倍.numba是第三方库,可以在运行时将Python代码编译为本地机器指令,而不会强制大幅度的改变普通的Python代码,使得在部分场景下执行Python的效率得到飞速的提升. 工作原理对比: Python文件执行过程 1..py文件通过解释器转化为虚拟机可以执行的字节码(.pyc):字节码在虚拟机上执行,得到结果. 2.字节码是一种只能运行在虚拟

  • python生成式的send()方法(详解)

    随便在网上找了找,感觉都是讲半天讲不清楚,这里写一下. def generator(): while True: receive=yield 1 print('extra'+str(receive)) g=generator() print(next(g)) print(g.send(111)) print(next(g)) 输出: 1 extra111 1 extraNone 1 为什么会这样呢,点进send就能看到一句话 send:Resumes the generator and "sen

  • Python中格式化format()方法详解

     Python中格式化format()方法详解 Python中格式化输出字符串使用format()函数, 字符串即类, 可以使用方法; Python是完全面向对象的语言, 任何东西都是对象; 字符串的参数使用{NUM}进行表示,0, 表示第一个参数,1, 表示第二个参数, 以后顺次递加; 使用":", 指定代表元素需要的操作, 如":.3"小数点三位, ":8"占8个字符空间等; 还可以添加特定的字母, 如: 'b' - 二进制. 将数字以2为基

  • 对python函数签名的方法详解

    函数签名对象,表示调用函数的方式,即定义了函数的输入和输出. 在Python中,可以使用标准库inspect的一些方法或类,来操作或创建函数签名. 获取函数签名及参数 使用标准库的signature方法,获取函数签名对象:通过函数签名的parameters属性,获取函数参数. # 注意是小写的signature from inspect import signature def foo(value): return value # 获取函数签名 foo_sig = signature(foo)

  • 对python 自定义协议的方法详解

    前面说到最近在写python的一些东西,然后和另外一位小伙伴定义了协议,然后昨天我有一部分东西没理解对,昨天上午我自己重写了一遍接收和发送的全部逻辑,昨天下午补了压力测试的脚本,自测没问题之后告知联调的小伙伴. 结果上午还是出了一点问题,然后我们两对代码,他写了一个python的实现.还好最后我这边没问题.(我也害怕是我这边出问题啊,所以我自己的代码都自己检查了好几遍) 简单放一下他的实现: import struct import ctypes class E(Exception): def

随机推荐