使用python绘制常用的图表

本文介绍如果使用python汇总常用的图表,与Excel的点选操作相比,用python绘制图表显得比较比较繁琐,尤其提现在对原始数据的处理上。但两者在绘制图表过程中的思路大致相同,Excel中能完成的工作python大多也能做到。为了更清晰的说明使用python绘制图表的过程,我们在汇总图表的代码中进行注解,说明每一行代码的具体作用。并在文章的最后给出了自定义字体和图表配色的对应表。

准备工作

import numpy as np
import pandas as pd
#导入图表库以进行图表绘制
import matplotlib.pyplot as plt
loandata=pd.DataFrame(pd.read_excel('loan_data.xlsx'))

折线图

#设置日期字段issue_d为loandata数据表索引字段
loandata = loandata.set_index('issue_d')
#按月对贷款金额loan_amnt求均值,以0填充空值
loan_plot=loandata['loan_amnt'].resample('M').fillna(0)
#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#创建一个一维数组赋值给a
a=np.array([1,2,3,4,5,6,7,8,9,10,11,12])
#创建折线图,数据源为按月贷款均值,标记点,标记线样式,线条宽度,标记点颜色和透明度
plt.plot(loan_plot,'g^',loan_plot,'g-',color='#99CC01',linewidth=3,markeredgewidth=3,markeredgecolor='#99CC01',alpha=0.8)
#添加x轴标签
plt.xlabel('月份')
#添加y周标签
plt.ylabel('贷款金额')
#添加图表标题
plt.title('分月贷款金额分布')
#添加图表网格线,设置网格线颜色,线形,宽度和透明度
plt.grid( color='#95a5a6',linestyle='--', linewidth=1 ,axis='y',alpha=0.4)
#设置数据分类名称
plt.xticks(a, ('1月','2月','3月','4月','5月','6月','7月','8月','9月','10月','11月','12月') )
#输出图表
plt.show()

柱状图

#按用户等级grade字段对贷款金额进行求和汇总
loan_grade=loandata.groupby('grade')['loan_amnt'].agg(sum)
#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#创建一个一维数组赋值给a
a=np.array([1,2,3,4,5,6])
#创建柱状图,数据源为按用户等级汇总的贷款金额,设置颜色,透明度和外边框颜色
plt.bar([1,2,3,4,5,6],loan_grade,color='#99CC01',alpha=0.8,align='center',edgecolor='white')
#设置x轴标签
plt.xlabel('用户等级')
#设置y周标签
plt.ylabel('贷款金额')
#设置图表标题
plt.title('不同用户等级的贷款金额分布')
#设置图例的文字和在图表中的位置
plt.legend(['贷款金额'], loc='upper right')
#设置背景网格线的颜色,样式,尺寸和透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.4)
#设置数据分类名称
plt.xticks(a,('A级','B级','C级','D级','E级','F级'))
#显示图表
plt.show()

条形图

#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#创建一个一维数组赋值给a
a=np.array([1,2,3,4,5,6])
#创建条形图,数据源为分等级贷款金额汇总,设置颜色,透明度和图表边框
plt.barh([1,2,3,4,5,6],loan_grade,color='#99CC01',alpha=0.8,align='center',edgecolor='white')
#添加x轴标题
plt.xlabel('贷款金额')
#添加y轴标题
plt.ylabel('用户等级')
#添加图表标题
plt.title('不同用户等级的贷款金额分布')
#添加图例,并设置在图表中的显示位置
plt.legend(['贷款金额'], loc='upper right')
#设置背景网格线的颜色,样式,尺寸和透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.4)
#设置数据分类名称
plt.yticks(a,('A级','B级','C级','D级','E级','F级'))
#显示图表
plt.show()

饼图

#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#设置饼图中每个数据分类的颜色
colors = ["#99CC01","#FFFF01","#0000FE","#FE0000","#A6A6A6","#D9E021"]
#设置饼图中每个数据分类的名称
name=['A级', 'B级', 'C级', 'D级', 'E级','F级']
#创建饼图,设置分类标签,颜色和图表起始位置等
plt.pie(loan_grade,labels=name,colors=colors,explode=(0, 0, 0.15, 0, 0, 0),startangle=60,autopct='%1.1f%%')
#添加图表标题
plt.title('不同用户等级的贷款金额占比')
#添加图例,并设置显示位置
plt.legend(['A级','B级','C级','D级','E级','F级'], loc='upper left')
#显示图表
plt.show()

散点图

#按月汇总贷款金额,以0填充空值
loan_x=loandata['loan_amnt'].resample('M',how=sum).fillna(0)
#按月汇总利息金额,以0填充空值
loan_y=loandata['total_rec_int'].resample('M',how=sum).fillna(0)
#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#创建散点图,贷款金额为x,利息金额为y,设置颜色,标记点样式和透明度等
plt.scatter(loan_x,loan_y,60,color='white',marker='o',edgecolors='#0D8ECF',linewidth=3,alpha=0.8)
#添加x轴标题
plt.xlabel('贷款金额')
#添加y轴标题
plt.ylabel('利息收入')
#添加图表标题
plt.title('贷款金额与利息收入')
#设置背景网格线的颜色,样式,尺寸和透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='both',alpha=0.4)
#显示图表
plt.show()

气泡图

#按月汇总贷款金额及利息
loan_x=loandata['loan_amnt'].resample('M',how=sum).fillna(0)
loan_y=loandata['total_rec_int'].resample('M',how=sum).fillna(0)
loan_z=loandata['total_rec_int'].resample('M',how=sum).fillna(0)
#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#设置气泡图颜色
colors = ["#99CC01","#FFFF01","#0000FE","#FE0000","#A6A6A6","#D9E021",'#FFF16E','#0D8ECF','#FA4D3D','#D2D2D2','#FFDE45','#9b59b6']
#创建气泡图贷款金额为x,利息金额为y,同时设置利息金额为气泡大小,并设置颜色透明度等。
plt.scatter(loan_x,loan_y,s=loan_z,color=colors,alpha=0.6)
#添加x轴标题
plt.xlabel('贷款金额')
#添加y轴标题
plt.ylabel('利息收入')
#添加图表标题
plt.title('贷款金额与利息收入')
#设置背景网格线的颜色,样式,尺寸和透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='both',alpha=0.4)
#显示图表
plt.show()

箱线图

#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#创建箱线图,数据源为贷款来源,设置横向显示
plt.boxplot(loandata['loan_amnt'],1,'rs',vert=False)
#添加x轴标题
plt.xlabel('贷款金额')
#添加图表标题
plt.title('贷款金额分布')
#设置背景网格线的颜色,样式,尺寸和透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='both',alpha=0.4)
#显示图表
plt.show()

直方图

#图表字体为华文细黑,字号为15
plt.rc('font', family='STXihei', size=15)
#创建直方图,数据源为贷款金额,将数据分为8等份显示,设置颜色和显示方式,透明度等
plt.hist(loandata['loan_amnt'],8,normed=1, histtype='stepfilled',facecolor='#99CC01', rwidth=0.9,alpha=0.6,edgecolor='white')
#添加x轴标题
plt.xlabel('贷款金额')
#添加y轴标题
plt.ylabel('概率')
#添加图表标题
plt.title('贷款金额概率密度')
#设置背景网格线的颜色,样式,尺寸和透明度
plt.grid(color='#95a5a6',linestyle='--', linewidth=1,axis='y',alpha=0.4)
#显示图表
plt.show()

自定义字体及配色

图表中所使用的字体,可以使用下面的字体名称替换family=后面的内容以改变图表中所显示的字体。

图表中的颜色,可以直接使用颜色名称,也可以使用简称来设置图表中使用的颜色,本文中没有使用默认的颜色,而是使用了自定义颜色。

自定义颜色的色号,本文中使用的是Hex色号,下面给出了Hex和RGB的对应关系,以及相应的颜色。可以使用下面的Hex色号替换本文中图表的颜色。

(0)

相关推荐

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • 使用Python绘制图表大全总结

    在使用Python绘制图表前,我们需要先安装两个库文件numpy和matplotlib. Numpy是Python开源的数值计算扩展,可用来存储和处理大型矩阵,比Python自身数据结构要高效:matplotlib是一个Python的图像框架,使用其绘制出来的图形效果和MATLAB下绘制的图形类似. 下面我通过一些简单的代码介绍如何使用 Python绘图. 一.图形绘制 直方图 importmatplotlib.pyplotasplt importnumpyasnp mu=100 sigma=2

  • 使用Python导出Excel图表以及导出为图片的方法

    本篇讲下如何使用纯python代码将excel 中的图表导出为图片.这里需要使用的模块有win32com.pythoncom模块. 网上经查询有人已经写好的模块pyxlchart,具体代码如下: from win32com.client import Dispatch import os import pythoncom class Pyxlchart(object): """ This class exports charts in an Excel Spreadsheet

  • python实现数据图表

    平时压力测试,生成一些数据后分析,直接看 log 不是很直观,前段时间看到公司同事分享了一个绘制图表python 模块 : plotly, 觉得很实用,利用周末时间熟悉下. plotly plotly 主页 : https://plot.ly/python/ 安装 在 ubuntu 环境下,安装 plotly 很简单 python 版本2.7+ $ sudo pip install plotly 绘图 在 plotly 网站注册后,可以直接将生成的图片保存到网站上,便于共享保存. 这里使用离线的

  • 使用python绘制常用的图表

    本文介绍如果使用python汇总常用的图表,与Excel的点选操作相比,用python绘制图表显得比较比较繁琐,尤其提现在对原始数据的处理上.但两者在绘制图表过程中的思路大致相同,Excel中能完成的工作python大多也能做到.为了更清晰的说明使用python绘制图表的过程,我们在汇总图表的代码中进行注解,说明每一行代码的具体作用.并在文章的最后给出了自定义字体和图表配色的对应表. 准备工作 import numpy as np import pandas as pd #导入图表库以进行图表绘

  • Python干货:分享Python绘制六种可视化图表

    可视化图表,有相当多种,但常见的也就下面几种,其他比较复杂一点,大都也是基于如下几种进行组合,变换出来的.对于初学者来说,很容易被这官网上众多的图表类型给吓着了,由于种类太多,几种图表的绘制方法很有可能会混淆起来. 因此,在这里,我特地总结了六种常见的基本图表类型,你可以通过对比学习,打下坚实的基础. 01. 折线图 绘制折线图,如果你数据不是很多的话,画出来的图将是曲折状态,但一旦你的数据集大起来,比如下面我们的示例,有100个点,所以我们用肉眼看到的将是一条平滑的曲线. 这里我绘制三条线,只

  • 如何利用 Python 绘制动态可视化图表

    目录 一.安装相关的模块 二.gif和matplotlib的结合 三.gif和plotly的结合 四.matplotlib多子图动态可视化 五.动态气泡图 一.安装相关的模块 首先第一步的话我们需要安装相关的模块,通过pip命令来安装 pip install gif 另外由于gif模块之后会被当做是装饰器放在绘制可视化图表的函数上,主要我们依赖的还是Python当中绘制可视化图表的matplotlib.plotly.以及altair这些模块,因此我们还需要下面这几个库 pip install "

  • 一文教会你用Python绘制动态可视化图表

    目录 前言 安装模块 可视化动态图 太阳图 指针图 桑基图 平行坐标图 总结 前言 对数据科学家来说,讲故事是一个至关重要的技能.为了表达我们的思想并且说服别人,我们需要有效的沟通.而漂漂亮亮的可视化是完成这一任务的绝佳工具. 本文将介绍5种非传统的可视化技术,可让你的数据故事更漂亮和更有效.这里将使用Python的Plotly图形库,让你可以毫不费力地生成动画图表和交互式图表. 安装模块 如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装: pip install plotl

  • python xlsxwriter库生成图表的应用示例

    xlsxwriter可能用过的人并不是很多,不过使用后就会感觉,他的功能让你叹服,除了可以按要求生成你所需要的excel外 还可以加上很形象的各种图,比如柱状图.饼图.折线图等. xlsxwriter 基本用法,创建 xlsx 文件并添加数据 官方文档:http://xlsxwriter.readthedocs.org/ xlsxwriter 可以操作 xls 格式文件 注意:xlsxwriter 只能创建新文件,不可以修改原有文件.如果创建新文件时与原有文件同名,则会覆盖原有文件 Linux

  • python opencv常用图形绘制方法(线段、矩形、圆形、椭圆、文本)

    最近学了下 python opencv,分享下使用 opencv 在图片上绘制常用图形的方法. 案例中实现了在图片中添加线段.圆形.矩形.椭圆形以及添加文字的方法,使用 opencv2 实现的. 实现方法 1)画线段 cv.line 在图片中绘制一段直线 # 绘制线段 # 参数1:图片 # 参数2:起点 # 参数3:终点 # 参数4:BGR颜色 # 参数5:宽度 cv2.line(img, (60, 40), (90, 90), (255, 255, 255), 2); 参数说明 参数 值 说明

  • 如何用Python绘制棒棒糖图表

    大家好,我是小F- 条形图在数据可视化里,是一个经常被使用到的图表. 虽然很好用,也还是存在着缺陷呢.比如条形图条目太多时,会显得臃肿,不够直观. 棒棒糖图表则是对条形图的改进,以一种小清新的设计,清晰明了表达了我们的数据. 下面小F就给大家介绍一下,如何使用Python绘制棒棒糖图表. 使用到的是我国1949到2019年,历年的出生人口数据,数据来源国家统计局. 首先读取一下数据. import pandas as pd import matplotlib.pyplot as plt # 读取

  • Python数据可视化之用Matplotlib绘制常用图形

    一.散点图 散点图用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式. 特点:判断变量之间是否存在数量关联趋势,表示离群点的分布规律. 散点图绘制: plt.scatter(x,y) # 以默认的形状颜色绘制散点图 实例: 假设我们获取到了上海2020年5,10月份每天白天的最高气温(分别位于列表a.b),那么此时如何观察气温和随时间变化的某种规律. # 绘制图形所需的数据 y_5 = [11,17,16,11,12,11,12,13,10,14,8

  • 利用python库matplotlib绘制不同的图表

    目录 1.绘制简单曲线图 2.绘制单条曲线图 3.绘制多条曲线 4.绘制直方图 5.绘制散点图 1.绘制简单曲线图 思路:通过3个坐标点,绘制曲线 import matplotlib.pyplot as plt   plt.plot([1, 3, 5], [4, 8, 10]) # 横坐标:1,3,5,纵坐标:4,8,10 # 显示所画的图 plt.show()  运行效果如图: 2.绘制单条曲线图 思路:先通过linspace绘制一条直线,然后在-pi~pi之间定义100个元素 import

随机推荐