Python数据结构与算法之图结构(Graph)实例分析

本文实例讲述了Python数据结构与算法之图结构(Graph)。分享给大家供大家参考,具体如下:

图结构(Graph)——算法学中最强大的框架之一。树结构只是图的一种特殊情况。

如果我们可将自己的工作诠释成一个图问题的话,那么该问题至少已经接近解决方案了。而我们我们的问题实例可以用树结构(tree)来诠释,那么我们基本上已经拥有了一个真正有效的解决方案了。

邻接表及加权邻接字典

对于图结构的实现来说,最直观的方式之一就是使用邻接列表。基本上就是针对每个节点设置一个邻接列表。下面我们来实现一个最简单的:假设我们现有 n 个节点,编号分别为 0, …, n-1.

节点当然可以是任何对象,可被赋予任何标签或名称。但使用 0, …, n-1 区间内的整数来实现的话,会简单许多。因为如果我们能用数字来代表节点,我们索引起来显然要方便许多。

然后,每个邻接(邻居)列表都只是一个数字列表,我们可以将它们编入一个大小为 n 的主列表,并用节点编号对其进行索引。由于这些列表内的节点的顺序是任意的,所以,实际上,我们是使用列表来实现邻接集(adjacency sets)。这里之所以还是使用列表这个术语,主要是因为传统。幸运的是,Python 本身就提供独立的 set 类型。

我们以下图为例,说明图结构的各种表示方法(当我们在执行与图相关的工作时,需要反复遵从一个主题思想,即一个图的最佳表示方法应该取决于我们要用它来做什么):

a, b, c, d, e, f, g, h = range(8)
N = [
  {b, c, d, e, f},
  {c, e},
  {d},
  {e},
  {f},
  {c, g, h},
  {f, h},
  {f, g}
]

在图论中,N(v) 代表的是 v 的邻居节点集

>>> b in N[a]         # neighborhood membership
True
>>> len(N[f])         # out-degree:出度
3

加权邻接字典

使用 dict 类型来代替 set 或 list 来表示邻接集。在 dict 类型中,每个邻居节点都会有一个键和一个额外的值,用于表示与其邻居节点(或出边)之间的关联性,如边的权重。

a, b, c, d, e, f, g, h = range(8)
N = [
  {b:2, c:1, d:3, e:9, f:4},
  {c:4, e:4},
  {d:8},
  {e:7},
  {f:5},
  {c:2, g:2, h:2},
  {f:1, h:6},
  {f:9, g:8}
]

客户端调用:

>>> b in N[a]         # neighborhood membership
True
>>> len(N[f])         # out-degree
3
>>> N[a][b]          # Edge weight for (a, b)
2

邻接矩阵

邻接矩阵是图的另一种表示方法,这种表示方法的主要不同在于,它不再列出每个节点的所有邻居节点。

a, b, c, d, e, f, g, h = range(8)
N =[
  [0, 1, 1, 1, 1, 1, 0, 0],
  [0, 0, 1, 0, 1, 0, 0, 0],
  [0, 0, 0, 1, 0, 0, 0, 0],
  [0, 0, 0, 0, 1, 0, 0, 0],
  [0, 0, 0, 0, 0, 1, 0, 0],
  [0, 0, 1, 0, 0, 0, 1, 1],
  [0, 0, 0, 0, 0, 1, 0, 1],
  [0, 0, 0, 0, 0, 1, 1, 0],
]

关于邻接矩阵:

(1)主对角线为自己到自己,为0
(2)行和为出度
(3)列和为入度

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • Python基于回溯法子集树模板解决取物搭配问题实例

    本文实例讲述了Python基于回溯法子集树模板解决取物搭配问题.分享给大家供大家参考,具体如下: 问题 有5件不同的上衣,3条不同的裤子,4顶不同的帽子,从中取出一顶帽子.一件上衣和一条裤子作为一种搭配,问有多少种不同的搭配? 分析 换个角度看,现有头.身.腿三个元素,每个元素都有各自的几种状态. 头元素有['帽1', '帽2', '帽3', '帽4']共4种状态,身元素有['衣1', '衣2', '衣3', '衣4', '衣5']共5种状态,腿元素有['裤1', '裤2', '裤3']共3种状

  • Python图算法实例分析

    本文实例讲述了Python图算法.分享给大家供大家参考,具体如下: #encoding=utf-8 import networkx,heapq,sys from matplotlib import pyplot from collections import defaultdict,OrderedDict from numpy import array # Data in graphdata.txt: # a b 4 # a h 8 # b c 8 # b h 11 # h i 7 # h g

  • python数据结构之图的实现方法

    本文实例讲述了python数据结构之图的实现方法.分享给大家供大家参考.具体如下: 下面简要的介绍下: 比如有这么一张图: A -> B     A -> C     B -> C     B -> D     C -> D     D -> C     E -> F     F -> C 可以用字典和列表来构建 graph = {'A': ['B', 'C'], 'B': ['C', 'D'], 'C': ['D'], 'D': ['C'], 'E': [

  • python回溯法实现数组全排列输出实例分析

    本文实例讲述了python回溯法实现数组全排列输出的方法.分享给大家供大家参考.具体分析如下: 全排列解释:从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排列起来,叫做从n个不同元素中取出m个元素的一个排列.当m=n时所有的排列情况叫全排列. from sys import stdout #code from http://www.jb51.net/ def perm(li, start, end): if(start == end): for elem in li: stdout.wr

  • python数据结构之图深度优先和广度优先实例详解

    本文实例讲述了python数据结构之图深度优先和广度优先用法.分享给大家供大家参考.具体如下: 首先有一个概念:回溯 回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目标.但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为"回溯点". 深度优先算法: (1)访问初始顶点v并标记顶点v已访问. (2)查找顶点v的第一个邻接顶点w. (3)若顶点v的邻接顶点w存在,则继续执行:否则回

  • Python基于回溯法子集树模板解决数字组合问题实例

    本文实例讲述了Python基于回溯法子集树模板解决数字组合问题.分享给大家供大家参考,具体如下: 问题 找出从自然数1.2.3.....n中任取r个数的所有组合. 例如,n=5,r=3的所有组合为: 1,2,3 1,2,4 1,2,5 1,3,4 1,3,5 1,4,5 2,3,4 2,3,5 2,4,5 3,4,5 分析 换个角度,r=3的所有组合,相当于元素个数为3的所有子集.因此,在遍历子集树的时候,对元素个数不为3的子树剪枝即可. 注意,这里不妨使用固定长度的解. 直接套用子集树模板.

  • Python基于回溯法子集树模板实现图的遍历功能示例

    本文实例讲述了Python基于回溯法子集树模板实现图的遍历功能.分享给大家供大家参考,具体如下: 问题 一个图: A --> B A --> C B --> C B --> D B --> E C --> A C --> D D --> C E --> F F --> C F --> D 从图中的一个节点E出发,不重复地经过所有其它节点后,回到出发节点E,称为一条路径.请找出所有可能的路径. 分析 将这个图可视化如下: 本问题涉及到图,那首

  • Python基于回溯法子集树模板实现8皇后问题

    本文实例讲述了Python基于回溯法子集树模板实现8皇后问题.分享给大家供大家参考,具体如下: 问题 8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 分析 为了简化问题,考虑到8个皇后不同行,则每一行放置一个皇后,每一行的皇后可以放置于第0.1.2.....7列,我们认为每一行的皇后有8种状态.那么,我们只要套用子集树模板,从第0行开始,自上而下,对每一行的皇后,遍历它的8个状态即可. 代码: ''' 8皇后问题 '''

  • python实现dict版图遍历示例

    复制代码 代码如下: #_*_coding:utf_8_import sysimport os class Graph():    def __init__(self, V, E):        self.V = V        self.E = E        self.visited = []        self.dict = {}        self.fd = open("input.txt") def initGraph(self):        self.vi

  • Python基于回溯法子集树模板解决0-1背包问题实例

    本文实例讲述了Python基于回溯法子集树模板解决0-1背包问题.分享给大家供大家参考,具体如下: 问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其中之一.N个物品中每一个物品,都有选择.不选择两种状态.因此,只需要对每一个物品的这两种状态进行遍历. 解是一个长度固定的N元0,1数组. 套用回溯法子集树模板,做起来不要太爽!!! 代码 '''0-

  • Python使用回溯法子集树模板解决迷宫问题示例

    本文实例讲述了Python使用回溯法解决迷宫问题.分享给大家供大家参考,具体如下: 问题 给定一个迷宫,入口已知.问是否有路径从入口到出口,若有则输出一条这样的路径.注意移动可以从上.下.左.右.上左.上右.下左.下右八个方向进行.迷宫输入0表示可走,输入1表示墙.为方便起见,用1将迷宫围起来避免边界问题. 分析 考虑到左.右是相对的,因此修改为:北.东北.东.东南.南.西南.西.西北八个方向.在任意一格内,有8个方向可以选择,亦即8种状态可选.因此从入口格子开始,每进入一格都要遍历这8种状态.

随机推荐