Python装饰器入门学习教程(九步学习)

装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果。相对于其它方式,装饰器语法简单,代码可读性高。因此,装饰器在Python项目中有广泛的应用。

这是在Python学习小组上介绍的内容,现学现卖、多练习是好的学习方式。

第一步:最简单的函数,准备附加额外功能

# -*- coding:gbk -*-
'''示例1: 最简单的函数,表示调用了两次'''
def myfunc():
print("myfunc() called.")
myfunc()
myfunc() 

第二步:使用装饰函数在函数执行前和执行后分别附加额外功能

# -*- coding:gbk -*-
'''示例2: 替换函数(装饰)
装饰函数的参数是被装饰的函数对象,返回原函数对象
装饰的实质语句: myfunc = deco(myfunc)'''
def deco(func):
print("before myfunc() called.")
func()
print(" after myfunc() called.")
return func
def myfunc():
print(" myfunc() called.")
myfunc = deco(myfunc)
myfunc()
myfunc() 

第三步:使用语法糖@来装饰函数

# -*- coding:gbk -*-
'''示例3: 使用语法糖@来装饰函数,相当于“myfunc = deco(myfunc)”
但发现新函数只在第一次被调用,且原函数多调用了一次'''
def deco(func):
print("before myfunc() called.")
func()
print(" after myfunc() called.")
return func
@deco
def myfunc():
print(" myfunc() called.")
myfunc()
myfunc() 

第四步:使用内嵌包装函数来确保每次新函数都被调用

# -*- coding:gbk -*-
'''示例4: 使用内嵌包装函数来确保每次新函数都被调用,
内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象'''
def deco(func):
def _deco():
print("before myfunc() called.")
func()
print(" after myfunc() called.")
# 不需要返回func,实际上应返回原函数的返回值
return _deco
@deco
def myfunc():
print(" myfunc() called.")
return 'ok'
myfunc()
myfunc() 

第五步:对带参数的函数进行装饰

# -*- coding:gbk -*-
'''示例5: 对带参数的函数进行装饰,
内嵌包装函数的形参和返回值与原函数相同,装饰函数返回内嵌包装函数对象'''
def deco(func):
def _deco(a, b):
print("before myfunc() called.")
ret = func(a, b)
print(" after myfunc() called. result: %s" % ret)
return ret
return _deco
@deco
def myfunc(a, b):
print(" myfunc(%s,%s) called." % (a, b))
return a + b
myfunc(1, 2)
myfunc(3, 4) 

第六步:对参数量不确定的函数进行装饰

# -*- coding:gbk -*-
'''示例6: 对参数数量不确定的函数进行装饰,
参数用(*args, **kwargs),自动适应变参和命名参数'''
def deco(func):
def _deco(*args, **kwargs):
print("before %s called." % func.__name__)
ret = func(*args, **kwargs)
print(" after %s called. result: %s" % (func.__name__, ret))
return ret
return _deco
@deco
def myfunc(a, b):
print(" myfunc(%s,%s) called." % (a, b))
return a+b
@deco
def myfunc2(a, b, c):
print(" myfunc2(%s,%s,%s) called." % (a, b, c))
return a+b+c
myfunc(1, 2)
myfunc(3, 4)
myfunc2(1, 2, 3)
myfunc2(3, 4, 5) 

第七步:让装饰器带参数

# -*- coding:gbk -*-
'''示例7: 在示例4的基础上,让装饰器带参数,
和上一示例相比在外层多了一层包装。
装饰函数名实际上应更有意义些'''
def deco(arg):
def _deco(func):
def __deco():
print("before %s called [%s]." % (func.__name__, arg))
func()
print(" after %s called [%s]." % (func.__name__, arg))
return __deco
return _deco
@deco("mymodule")
def myfunc():
print(" myfunc() called.")
@deco("module2")
def myfunc2():
print(" myfunc2() called.")
myfunc()
myfunc2() 

第八步:让装饰器带 类 参数

# -*- coding:gbk -*-
'''示例8: 装饰器带类参数'''
class locker:
def __init__(self):
print("locker.__init__() should be not called.")
@staticmethod
def acquire():
print("locker.acquire() called.(这是静态方法)")
@staticmethod
def release():
print(" locker.release() called.(不需要对象实例)")
def deco(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco():
print("before %s called [%s]." % (func.__name__, cls))
cls.acquire()
try:
return func()
finally:
cls.release()
return __deco
return _deco
@deco(locker)
def myfunc():
print(" myfunc() called.")
myfunc()
myfunc() 

第九步:装饰器带类参数,并分拆公共类到其他py文件中,同时演示了对一个函数应用多个装饰器

# -*- coding:gbk -*-
'''mylocker.py: 公共类 for 示例9.py'''
class mylocker:
def __init__(self):
print("mylocker.__init__() called.")
@staticmethod
def acquire():
print("mylocker.acquire() called.")
@staticmethod
def unlock():
print(" mylocker.unlock() called.")
class lockerex(mylocker):
@staticmethod
def acquire():
print("lockerex.acquire() called.")
@staticmethod
def unlock():
print(" lockerex.unlock() called.")
def lockhelper(cls):
'''cls 必须实现acquire和release静态方法'''
def _deco(func):
def __deco(*args, **kwargs):
print("before %s called." % func.__name__)
cls.acquire()
try:
return func(*args, **kwargs)
finally:
cls.unlock()
return __deco
return _deco
# -*- coding:gbk -*-

'''示例9: 装饰器带类参数,并分拆公共类到其他py文件中

同时演示了对一个函数应用多个装饰器'''

from mylocker import *
class example:
@lockhelper(mylocker)
def myfunc(self):
print(" myfunc() called.")
@lockhelper(mylocker)
@lockhelper(lockerex)
def myfunc2(self, a, b):
print(" myfunc2() called.")
return a + b
if __name__=="__main__":
a = example()
a.myfunc()
print(a.myfunc())
print(a.myfunc2(1, 2))
print(a.myfunc2(3, 4)) 

以上给大家分享了Python装饰器入门学习教程(九步学习),希望对大家有所帮助。

(0)

相关推荐

  • 简单上手Python中装饰器的使用

    Python的装饰器可以实现在代码运行期间修改函数的上下文, 即可以定义函数在执行之前进行何种操作和函数执行后进行何种操作, 而函数本身并没有任何的改变. 这个看起来很复杂, 实际上应用到了我之前说过的闭包的概念, 仔细看一看, 其实并不复杂. 首先, 我们先定义一个函数, 这个函数可以输出我的个人昵称: def my_name(): print "Yi_Zhi_Yu" my_name() # Yi_Zhi_Yu 那假如我需要在个人昵称输出前, 在输出我的个人uid呢, 当然, 要求是

  • Python装饰器基础详解

    装饰器(decorator)是一种高级Python语法.装饰器可以对一个函数.方法或者类进行加工.在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果.相对于其它方式,装饰器语法简单,代码可读性高.因此,装饰器在Python项目中有广泛的应用. 前面快速介绍了装饰器的语法,在这里,我们将深入装饰器内部工作机制,更详细更系统地介绍装饰器的内容,并学习自己编写新的装饰器的更多高级语法. 什么是装饰器 装饰是为函数和类指定管理代码的一种

  • 深入学习Python中的装饰器使用

    装饰器 vs 装饰器模式 首先,大家需要明白的是使用装饰器这个词可能会有不少让大家担忧的地方,因为它很容易和设计模式这本书里面的装饰器模式发生混淆.曾经一度考虑给这个新的功能取一些其它的术语名称,但是装饰器最终还是胜出了. 的确,你可以使用python装饰器来实现装饰器模式,但这绝对是它很小的一部分功能,有点暴殄天物.对于python装饰器,我觉得它是最接近宏的存在. 宏的历史 宏有有着非常悠久的历史,不过大多数人可能会有使用C语言预处理宏的经验.但是,对于C语言里的宏来说,它存在一些问题,(1

  • Python的几个高级语法概念浅析(lambda表达式闭包装饰器)

    1. 匿名函数 匿名函数(anonymous function)是指未与任何标识符绑定的函数,多用在functional programming languages领域,典型应用场合: 1) 作为参数传给高阶函数(higher-order function ),如python中的built-in函数filter/map/reduce都是典型的高阶函数 2) 作为高阶函数的返回值(虽然此处的"值"实际上是个函数对象) 与命名函数(named function)相比,若函数只被调用1次或有

  • Python中使用装饰器来优化尾递归的示例

    尾递归简介 尾递归是函数返回最后一个操作是递归调用,则该函数是尾递归. 递归是线性的比如factorial函数每一次调用都会创建一个新的栈(last-in-first-out)通过不断的压栈,来创建递归, 很容易导致栈的溢出.而尾递归则使用当前栈通过数据覆盖来优化递归函数. 阶乘函数factorial, 通过把计算值传递的方法完成了尾递归.但是python不支出编译器优化尾递归所以当递归多次的话还是会报错(学习用). eg: def factorial(n, x): if n == 0: ret

  • Python黑魔法@property装饰器的使用技巧解析

    @property有什么用呢?表面看来,就是将一个方法用属性的方式来访问. 上代码,代码最清晰了. class Circle(object): def __init__(self, radius): self.radius = radius @property def area(self): return 3.14 * self.radius ** 2 c = Circle(4) print c.radius print c.area 可以看到,area虽然是定义成一个方法的形式,但是加上@pr

  • 实例讲解Python编程中@property装饰器的用法

    取值和赋值 class Actress(): def __init__(self): self.name = 'TianXin' self.age = 5 类Actress中有两个成员变量name和age.在外部对类的成员变量的操作,主要包括取值和赋值.简单的取值操作是x=object.var,简单的赋值操作是object.var=value. >>> actress = Actress() >>> actress.name #取值操作 'TianXin' >&g

  • 分析Python中设计模式之Decorator装饰器模式的要点

    先给出一个四人团对Decorator mode的定义:动态地给一个对象添加一些额外的职责. 再来说说这个模式的好处:认证,权限检查,记日志,检查参数,加锁,等等等等,这些功能和系统业务无关,但又是系统所必须的,说的更明白一点,就是面向方面的编程(AOP). 在Python中Decorator mode可以按照像其它编程语言如C++, Java等的样子来实现,但是Python在应用装饰概念方面的能力上远不止于此,Python提供了一个语法和一个编程特性来加强这方面的功能.Python提供的语法就是

  • 浅析Python编写函数装饰器

    编写函数装饰器 本节主要介绍编写函数装饰器的相关内容. 跟踪调用 如下代码定义并应用一个函数装饰器,来统计对装饰的函数的调用次数,并且针对每一次调用打印跟踪信息. class tracer: def __init__(self,func): self.calls = 0 self.func = func def __call__(self,*args): self.calls += 1 print('call %s to %s' %(self.calls, self.func.__name__)

  • 深入理解python中的闭包和装饰器

    python中的闭包从表现形式上定义(解释)为:如果在一个内部函数里,对在外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包(closure). 以下说明主要针对 python2.7,其他版本可能存在差异. 也许直接看定义并不太能明白,下面我们先来看一下什么叫做内部函数: def wai_hanshu(canshu_1): def nei_hanshu(canshu_2): # 我在函数内部有定义了一个函数 return canshu_1*canshu_2 return

  • python利用装饰器进行运算的实例分析

    今天想用python的装饰器做一个运算,代码如下 >>> def mu(x): def _mu(*args,**kwargs): return x*x return _mu >>> @mu def test(x,y): print '%s,%s' %(x,y) >>> test(3,5) Traceback (most recent call last): File "<pyshell#111>", line 1, in

  • python中函数总结之装饰器闭包详解

    1.前言 函数也是一个对象,从而可以增加属性,使用句点来表示属性. 如果内部函数的定义包含了在外部函数中定义的对象的引用(外部对象可以是在外部函数之外),那么内部函数被称之为闭包. 2.装饰器 装饰器就是包装原来的函数,从而在不需要修改原来代码的基础之上,可以做更多的事情. 装饰器语法如下: @deco2 @deco1 def func(arg1,arg2...): pass 这个表示了有两个装饰器的函数,那么表示的含义为:func = deco2(deco1(func)) 无参装饰器语法如下:

随机推荐