OpenCV+python手势识别框架和实例讲解

基于OpenCV2.4.8和 python 2.7实现简单的手势识别。

以下为基本步骤

1.去除背景,提取手的轮廓

2. RGB->YUV,同时计算直方图

3.进行形态学滤波,提取感兴趣的区域

4.找到二值化的图像轮廓

5.找到最大的手型轮廓

6.找到手型轮廓的凸包

7.标记手指和手掌

8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状

提取手的轮廓 cv2.findContours()

找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点,包括手掌的中心,手指的相对位置

特征字典主要包括以下几个方面:名字,手掌中心点,手掌的直径,手指的坐标点,手指的个数,每个手指之间的角度

例如:

# BEGIN ------------------------------------#
V=gesture("V")
V.set_palm((475,225),45)
V.set_finger_pos([(490,90),(415,105)])
V.calc_angles()
dict[V.getname()]=V
# END --------------------------------------#

最终的识别结果如下:

示例代码

  frame=hand_threshold(fg_frame,hand_histogram)
  contour_frame=np.copy(frame)
  contours,hierarchy=cv2.findContours(contour_frame,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
  found,hand_contour=hand_contour_find(contours)
  if(found):
   hand_convex_hull=cv2.convexHull(hand_contour)
   frame,hand_center,hand_radius,hand_size_score=mark_hand_center(frame_original,hand_contour)
   if(hand_size_score):
    frame,finger,palm=mark_fingers(frame,hand_convex_hull,hand_center,hand_radius)
    frame,gesture_found=find_gesture(frame,finger,palm)
  else:
   frame=frame_original

以上这篇OpenCV+python手势识别框架和实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python+OpenCV实现车牌号码识别

    基于python+OpenCV的车牌号码识别,供大家参考,具体内容如下 车牌识别行业已具备一定的市场规模,在电子警察.公路卡口.停车场.商业管理.汽修服务等领域已取得了部分应用.一个典型的车辆牌照识别系统一般包括以下4个部分:车辆图像获取.车牌定位.车牌字符分割和车牌字符识别 1.车牌定位的主要工作是从获取的车辆图像中找到汽车牌照所在位置,并把车牌从该区域中准确地分割出来 这里所采用的是利用车牌的颜色(黄色.蓝色.绿色) 来进行定位 #定位车牌 def color_position(img,ou

  • python+opencv实现动态物体识别

    注意:这种方法十分受光线变化影响 自己在家拿着手机瞎晃的成果图: 源代码: # -*- coding: utf-8 -*- """ Created on Wed Sep 27 15:47:54 2017 @author: tina """ import cv2 import numpy as np camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 # 判断视频是否打开 if (camera.isOpened()

  • Python+OpenCV实现车牌字符分割和识别

    最近做一个车牌识别项目,入门级别的,十分简单. 车牌识别总体分成两个大的步骤: 一.车牌定位:从照片中圈出车牌 二.车牌字符识别 这里只说第二个步骤,字符识别包括两个步骤: 1.图像处理 原本的图像每个像素点都是RGB定义的,或者称为有R/G/B三个通道.在这种情况下,很难区分谁是背景,谁是字符,所以需要对图像进行一些处理,把每个RGB定义的像素点都转化成一个bit位(即0-1代码),具体方法如下: ①将图片灰度化 名字拗口,但是意思很好理解,就是把每个像素的RGB都变成灰色的RGB值,而灰色的

  • 详解如何用OpenCV + Python 实现人脸识别

    下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

  • python使用opencv进行人脸识别

    环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python Opencv实现图像轮廓识别功能

    本文实例为大家分享了python opencv识别图像轮廓的具体代码,供大家参考,具体内容如下 要求:用矩形或者圆形框住图片中的云朵(不要求全部框出) 轮廓检测 Opencv-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓. import cv2 img = cv2.imread('cloud.jpg') # 灰度图像 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 二值化 ret, binary = cv2.th

  • python+opencv识别图片中的圆形

    本文实例为大家分享了python+opencv识别图片中足球的方法,供大家参考,具体内容如下 先补充下霍夫圆变换的几个参数知识: dp,用来检测圆心的累加器图像的分辨率于输入图像之比的倒数,且此参数允许创建一个比输入图像分辨率低的累加器.上述文字不好理解的话,来看例子吧.例如,如果dp= 1时,累加器和输入图像具有相同的分辨率.如果dp=2,累加器便有输入图像一半那么大的宽度和高度. minDist,为霍夫变换检测到的圆的圆心之间的最小距离,即让我们的算法能明显区分的两个不同圆之间的最小距离.这

  • python+opencv实现的简单人脸识别代码示例

    # 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • python opencv检测目标颜色的实例讲解

    实例如下所示: # -*- coding:utf-8 -*- __author__ = 'kingking' __version__ = '1.0' __date__ = '14/07/2017' import cv2 import numpy as np import time if __name__ == '__main__': Img = cv2.imread('example.png')#读入一幅图像 kernel_2 = np.ones((2,2),np.uint8)#2x2的卷积核

  • Python爬虫框架Scrapy实例代码

    目标任务:爬取腾讯社招信息,需要爬取的内容为:职位名称,职位的详情链接,职位类别,招聘人数,工作地点,发布时间. 一.创建Scrapy项目 scrapy startproject Tencent 命令执行后,会创建一个Tencent文件夹,结构如下 二.编写item文件,根据需要爬取的内容定义爬取字段 # -*- coding: utf-8 -*- import scrapy class TencentItem(scrapy.Item): # 职位名 positionname = scrapy.

  • Python 模拟购物车的实例讲解

    1.功能简介 此程序模拟用户登陆商城后购买商品操作.可实现用户登陆.商品购买.历史消费记查询.余额和消费信息更新等功能.首次登陆输入初始账户资金,后续登陆则从文件获取上次消费后的余额,每次购买商品后会扣除相应金额并更新余额信息,退出时也会将余额和消费记录更新到文件以备后续查询. 2.实现方法 架构: 本程序采用python语言编写,将各项任务进行分解并定义对应的函数来处理,从而使程序结构清晰明了.主要编写了六个函数: (1)login(name,password) 用户登陆函数,实现用户名和密码

  • Python文件和流(实例讲解)

    1.文件写入 #打开文件,路径不对会报错 f = open(r"C:\Users\jm\Desktop\pyfile.txt","w") f.write("Hello,world!\n") f.close() 2.文件读取 #读取 f = open(r"C:\Users\jm\Desktop\pyfile.txt","r") print(f.read()) f.close() 输出: Hello,world

  • python之Character string(实例讲解)

    1.python字符串 字符串是 Python 中最常用的数据类型.我们可以使用引号('或")来创建字符串,l Python不支持单字符类型,单字符也在Python也是作为一个字符串使用. >>> var1 = 'hello python' #定义字符串 >>> print(var1[0]) #切片截取,从0开始,不包括截取尾数 h >>> print(var1[0:5]) hello >>> print(var1[-6:]

  • python用户管理系统的实例讲解

    学Python这么久了,第一次写一个这么多的代码(我承认只有300多行,重复的代码挺多的,我承认我确实垃圾),但是也挺不容易的 自定义函数+装饰器,每一个模块写的一个函数 很多地方能用装饰器(逻辑跟不上,有的地方没用),包括双层装饰器(不会),很多地方需要优化,重复代码太多 我还是把我的流程图拿出来吧,虽然看着比上次的垃圾,但是我也做了一个小时,不容易! 好像是挺丑的(表示不会画,但我下次一定努力) 用户文件: 文件名为:user.txt 1代表管理员用户 2代表普通用户 smelond|adm

  • 在Windows中设置Python环境变量的实例讲解

    在 Windows 设置环境变量 在环境变量中添加Python目录: 在命令提示框中(cmd) : 输入 path=%path%;C:\Python 按下"Enter". 注意: C:\Python 是Python的安装目录. 也可以通过以下方式设置: • 右键点击"计算机",然后点击"属性" • 然后点击"高级系统设置" • 选择"系统变量"窗口下面的"Path",双击即可! • 然后

  • 使用Python读取二进制文件的实例讲解

    目标:目标文件为一个float32型存储的二进制文件,按列优先方式存储.本文使用Python读取该二进制文件并使用matplotlib.pyplot相关工具画出图像 工具:Python3, matplotlib,os,struct,numpy 1. 读取二进制文件 首先使用open函数打开文件,打开模式选择二进制读取"rb". f = open(filename, "rb") 第二步,需要打开按照行列读取文件,由于是纯二进制文件,内部不含邮任何的数据结构信息,因此我

  • python 列表降维的实例讲解

    列表降维(python:3.x) 之前遇到需要使用列表降维的情况, 如: 原列表 : [[12,34],[57,86,1],[43,22,7],[1,[2,3]],6] 转化为 : [12, 34, 57, 86, 1, 43, 22, 7, 1, 2, 3, 6] 思路: 把列表转化为字符串,直接去掉 "[" 和 "]" 最后由字符串转化为列表 a = [[12,34],[57,86,1],[43,22,7],[1,[2,3]],6] #把列表转为字符串 b =

随机推荐