OpenCV-Python实现轮廓检测实例分析

相比C++而言,Python适合做原型。本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处。这篇文章介绍在Python中使用OpenCV检测并绘制轮廓。

提示:

转载请详细注明原作者及出处,谢谢!

本文介绍在OpenCV-Python中检测并绘制轮廓的方法。

本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识。笔者推荐清华大学出版社的《图像处理与计算机视觉算法及应用(第2版)》。

轮廓检测

轮廓检测也是图像处理中经常用到的。OpenCV-Python接口中使用cv2.findContours()函数来查找检测物体的轮廓。

实现

使用方式如下:

import cv2 

img = cv2.imread('D:\\test\\contour.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY) 

contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img,contours,-1,(0,0,255),3) 

cv2.imshow("img", img)
cv2.waitKey(0) 

需要注意的是cv2.findContours()函数接受的参数为二值图,即黑白的(不是灰度图),所以读取的图像要先转成灰度的,再转成二值图,参见4、5两行。第六行是检测轮廓,第七行是绘制轮廓。

结果

原图如下:

检测结果如下:

注意,findcontours函数会“原地”修改输入的图像。这一点可通过下面的语句验证:

cv2.imshow("binary", binary)
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
cv2.imshow("binary2", binary) 

执行这些语句后会发现原图被修改了。

cv2.findContours()函数

函数的原型为

cv2.findContours(image, mode, method[, contours[, hierarchy[, offset ]]])

返回两个值:contours:hierarchy。

参数

第一个参数是寻找轮廓的图像;

第二个参数表示轮廓的检索模式,有四种(本文介绍的都是新的cv2接口):
cv2.RETR_EXTERNAL表示只检测外轮廓
cv2.RETR_LIST检测的轮廓不建立等级关系
cv2.RETR_CCOMP建立两个等级的轮廓,上面的一层为外边界,里面的一层为内孔的边界信息。如果内孔内还有一个连通物体,这个物体的边界也在顶层。
cv2.RETR_TREE建立一个等级树结构的轮廓。

第三个参数method为轮廓的近似办法
cv2.CHAIN_APPROX_NONE存储所有的轮廓点,相邻的两个点的像素位置差不超过1,即max(abs(x1-x2),abs(y2-y1))==1
cv2.CHAIN_APPROX_SIMPLE压缩水平方向,垂直方向,对角线方向的元素,只保留该方向的终点坐标,例如一个矩形轮廓只需4个点来保存轮廓信息
cv2.CHAIN_APPROX_TC89_L1,CV_CHAIN_APPROX_TC89_KCOS使用teh-Chinl chain 近似算法

返回值

cv2.findContours()函数返回两个值,一个是轮廓本身,还有一个是每条轮廓对应的属性。

contour返回值

cv2.findContours()函数首先返回一个list,list中每个元素都是图像中的一个轮廓,用numpy中的ndarray表示。这个概念非常重要。在下面drawContours中会看见。通过

print (type(contours))
print (type(contours[0]))
print (len(contours)) 

可以验证上述信息。会看到本例中有两条轮廓,一个是五角星的,一个是矩形的。每个轮廓是一个ndarray,每个ndarray是轮廓上的点的集合。

由于我们知道返回的轮廓有两个,因此可通过

cv2.drawContours(img,contours,0,(0,0,255),3) 

cv2.drawContours(img,contours,1,(0,255,0),3) 

分别绘制两个轮廓,关于该参数可参见下面一节的内容。同时通过

print (len(contours[0]))
print (len(contours[1])) 

输出两个轮廓中存储的点的个数,可以看到,第一个轮廓中只有4个元素,这是因为轮廓中并不是存储轮廓上所有的点,而是只存储可以用直线描述轮廓的点的个数,比如一个“正立”的矩形,只需4个顶点就能描述轮廓了。

hierarchy返回值

此外,该函数还可返回一个可选的hiararchy结果,这是一个ndarray,其中的元素个数和轮廓个数相同,每个轮廓contours[i]对应4个hierarchy元素hierarchy[i][0]~hierarchy[i][3],分别表示后一个轮廓、前一个轮廓、父轮廓、内嵌轮廓的索引编号,如果没有对应项,则该值为负数。

通过

print (type(hierarchy))
print (hierarchy.ndim)
print (hierarchy[0].ndim)
print (hierarchy.shape) 

得到

3
2
(1, 2, 4) 

可以看出,hierarchy本身包含两个ndarray,每个ndarray对应一个轮廓,每个轮廓有四个属性。

轮廓的绘制

OpenCV中通过cv2.drawContours在图像上绘制轮廓。

cv2.drawContours()函数

cv2.drawContours(image, contours, contourIdx, color[, thickness[, lineType[, hierarchy[, maxLevel[, offset ]]]]])

第一个参数是指明在哪幅图像上绘制轮廓;
第二个参数是轮廓本身,在Python中是一个list。
第三个参数指定绘制轮廓list中的哪条轮廓,如果是-1,则绘制其中的所有轮廓。后面的参数很简单。其中thickness表明轮廓线的宽度,如果是-1(cv2.FILLED),则为填充模式。绘制参数将在以后独立详细介绍。

补充:

写着写着发现一篇文章介绍不完,所以这里先作为入门的。更多关于轮廓的信息有机会再开一篇文章介绍。

但有朋友提出计算轮廓的极值点。可用下面的方式计算得到,如下

pentagram = contours[1] #第二条轮廓是五角星 

leftmost = tuple(pentagram[:,0][pentagram[:,:,0].argmin()])
rightmost = tuple(pentagram[:,0][pentagram[:,:,0].argmin()]) 

cv2.circle(img, leftmost, 2, (0,255,0),3)
cv2.circle(img, rightmost, 2, (0,0,255),3)  

注意!假设轮廓有100个点,OpenCV返回的ndarray的维数是(100,1,2)!!!而不是我们认为的(100,2)。切记!!!人民邮电出版社出版了一本《NumPy攻略:Python科学计算与数据分析》,推荐去看一下。

更新:关于pentagram[:,0]的意思

在numpy的数组中,用逗号分隔的是轴的索引。举个例子,假设有如下的数组:

a = np.array([[[3,4]], [[1,2]],[[5,7]],[[3,7]],[[1,8]]]) 

其shape是(5, 1, 2)。与我们的轮廓是相同的。那么a[:,0]的结果就是:

[3,4], [1,2], [5,7], [3,7], [1,8] 

这里a[:,0]的意思就是a[0:5,0],也就是a[0:5,0:0:2],这三者是等价的。

回头看一下,a的shape是(5,1,2),表明是三个轴的。在numpy的数组中,轴的索引是通过逗号分隔的。同时冒号索引“:”表示的是该轴的所有元素。因此a[:,0]表示的是第一个轴的所有元素和第二个轴的第一个元素。在这里既等价于a[0:5,0]。

再者,若给出的索引数少于数组中总索引数,则将已给出的索引树默认按顺序指派到轴上。比如a[0:5,0]只给出了两个轴的索引,则第一个索引就是第一个轴的,第二个索引是第二个轴的,而第三个索引没有,则默认为[:],即该轴的所有内容。因此a[0:5,0]也等价于a[0:5,0:0:2]。

再详细一点,a的全体内容为:[[[3,4]],[[1,2]],[[5,7]],[[3,7]],[[1,8]]]。去掉第一层方括号,其中有五个元素,每个元素为[[3,4]]这样的,所以第一个索引的范围为[0:5]。注意OpenCV函数返回的多维数组和常见的numpy数组的不同之处!

观察[[3,4]],我们发现其中只有一个元素,即[3,4],第二个索引为[0:1]。

再去掉一层方括号,我们面对的是[3,4],有两个元素,所以第三个索引的范围为[0:2]。

再次强调一下OpenCVPython接口函数返回的NumPy数组和普通的NumPy数组在组织上的不同之处。

PS:OpenCV-Python讨论群——219962286,欢迎大家加入互相探讨学习。

得到的结果为如下:

总结

以上就是本文关于OpenCV-Python实现轮廓检测实例分析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

简单了解OpenCV是个什么东西

python通过opencv实现批量剪切图片

python+opencv实现的简单人脸识别代码示例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

您可能感兴趣的文章:

  • Python通过OpenCV的findContours获取轮廓并切割实例
  • python-opencv在有噪音的情况下提取图像的轮廓实例
  • python使用opencv读取图片的实例
  • python opencv实现任意角度的透视变换实例代码
(0)

相关推荐

  • python opencv实现任意角度的透视变换实例代码

    本文主要分享的是一则python+opencv实现任意角度的透视变换的实例,具体如下: # -*- coding:utf-8 -*- import cv2 import numpy as np def rad(x): return x * np.pi / 180 img = cv2.imread("6.jfif") cv2.imshow("original", img) # 扩展图像,保证内容不超出可视范围 img = cv2.copyMakeBorder(img,

  • Python通过OpenCV的findContours获取轮廓并切割实例

    1 获取轮廓 OpenCV2获取轮廓主要是用cv2.findContours import numpy as np import cv2 im = cv2.imread('test.jpg') imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) ret,thresh = cv2.threshold(imgray,127,255,0) image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_T

  • python使用opencv读取图片的实例

    安装好环境后,开始了第一个Hello word 例子,如何读取图片,保存图品 import cv2 import numpy as np import matplotlib.pyplot as plt #读取图片代码 img = cv2.imread('test.jpg',cv2.IMREAD_GRAYSCALE) #IMREAD_COLOR = 1 #IMREAD_UNCHANGED = -1 #展示图片 cv2.imshow('image',img) cv2.waitKey(0) cv2.d

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • OpenCV-Python实现轮廓检测实例分析

    相比C++而言,Python适合做原型.本系列的文章介绍如何在Python中用OpenCV图形库,以及与C++调用相应OpenCV函数的不同之处.这篇文章介绍在Python中使用OpenCV检测并绘制轮廓. 提示: 转载请详细注明原作者及出处,谢谢! 本文介绍在OpenCV-Python中检测并绘制轮廓的方法. 本文不介详细的理论知识,读者可从其他资料中获取相应的背景知识.笔者推荐清华大学出版社的<图像处理与计算机视觉算法及应用(第2版)>. 轮廓检测 轮廓检测也是图像处理中经常用到的.Ope

  • opencv python 图像轮廓/检测轮廓/绘制轮廓的方法

    图像的轮廓检测,如计算多边形外界.形状毕竟.计算感兴趣区域等. Contours : Getting Started 轮廓 简单地解释为连接所有连续点(沿着边界)的曲线,具有相同的颜色或强度. 轮廓是形状分析和物体检测和识别的有用工具 NOTE 为获得更好的准确性,请使用二值图,在找到轮廓之前,应用阈值法或canny边缘检测 从OpenCV 3.2开始,findContours()不再修改源图像,而是将修改后的图像作为三个返回参数中的第一个返回 在OpenCV中,查找轮廓是从黑色背景中查找白色对

  • Python中OpenCV实现查找轮廓的实例

    本文将结合实例代码,介绍 OpenCV 如何查找轮廓.获取边界框. 代码: contours.py OpenCV 提供了 findContours 函数查找轮廓,需要以二值化图像作为输入.并指定些选项调用即可. 我们以下图作为示例: 二值化图像 代码工程 data/ 提供了小狗和红球的二值化掩膜图像: 其使用预训练好的实例分割模型来生成的,脚本可见 detectron2_seg_threshold.py.模型检出结果,如下: 模型用的 Mask R-CNN 已有预测边框.但其他模型会有只出预测掩

  • OpenCV+python手势识别框架和实例讲解

    基于OpenCV2.4.8和 python 2.7实现简单的手势识别. 以下为基本步骤 1.去除背景,提取手的轮廓 2. RGB->YUV,同时计算直方图 3.进行形态学滤波,提取感兴趣的区域 4.找到二值化的图像轮廓 5.找到最大的手型轮廓 6.找到手型轮廓的凸包 7.标记手指和手掌 8.把提取的特征点和手势字典中的进行比对,然后判断手势和形状 提取手的轮廓 cv2.findContours() 找到最大凸包cv2.convexHull(),然后找到手掌和手指的相对位置,定位手型的轮廓和关键点

  • Python iter()函数用法实例分析

    本文实例讲述了Python iter()函数用法.分享给大家供大家参考,具体如下: python中的迭代器用起来非常灵巧,不仅可以迭代序列,也可以迭代表现出序列行为的对象,例如字典的键.一个文件的行,等等. 迭代器就是有一个next()方法的对象,而不是通过索引来计数.当使用一个循环机制需要下一个项时,调用迭代器的next()方法,迭代完后引发一个StopIteration异常. 但是迭代器只能向后移动.不能回到开始.再次迭代只能创建另一个新的迭代对象. 反序迭代工具:reversed()将返回

  • Python callable()函数用法实例分析

    本文实例讲述了Python callable()函数用法.分享给大家供大家参考,具体如下: python中的内建函数callable( ) ,可以检查一个对象是否是可调用的 . 对于函数, 方法, lambda 函数式, 类, 以及实现了 _ _call_ _ 方法的类实例, 它都返回 True. >>> help(callable) Help on built-in function callable in module __builtin__: callable(...) calla

  • Python Selenium异常处理的实例分析

    1.说明 在使用selenium时,不可避免的会遇到一些异常情况,比如超时.没有找到节点的错误等等.一旦出现这样的错误,程序就不能再运行了.这里我们可以使用tryexcept语句来捕捉异常. 2.实例 from selenium import webdriver from selenium.common.exceptions import TimeoutException, NoSuchElementException browser = webdriver.Chrome() try: brow

  • 利用python调用摄像头的实例分析

    这篇文章主要介绍了python调用摄像头的示例代码,帮助大家更好的理解和使用python,感兴趣的朋友可以了解下 一.打开摄像头 import cv2 import numpy as np def video_demo(): capture = cv2.VideoCapture(0)#0为电脑内置摄像头 while(True): ret, frame = capture.read()#摄像头读取,ret为是否成功打开摄像头,true,false. frame为视频的每一帧图像 frame = c

  • python关键字传递参数实例分析

    1.说明 关键词传递以"形参变量名=实参"的形式参与实参关联,根据形参的名称进行参数传递,使实参和形参的顺序不一致.不用担心定义函数时参数的顺序,直接在传参时指定相应的名称即可. 2.两种形式 makeup_url(protocal='http', address='www.baidu.com') makeup_url(address='www.baidu.com',protocal='http') 3.实例 def makeup_url(protocal, address): pri

  • Python数据标准化的实例分析

    说明 1.将原始数据转换为均值为0,标准差在1范围内. 2.对标准化而言:如果出现异常点,由于有一定数据量,少量异常点对平均值的影响不大,因此方差变化不大. 实例 def stand_demo(): """ 标准化 :return: """ # 1. 获取数据 data = pd.read_csv('dating.txt') data = data.iloc[:, :3] print('data:\n', data) # 2.实例化一个转换器类

随机推荐