C++编程中的命名空间基本知识讲解

命名空间是一个声明性区域,为其内部的标识符(类型、函数和变量等的名称)提供一个范围。命名空间用于将代码组织到逻辑组中,还可用于避免名称冲突,尤其是在基本代码包括多个库时。命名空间范围内的所有标识符彼此可见,而没有任何限制。命名空间之外的标识符可通过使用每个标识符的完全限定名(例如 std::vector<std::string> vec;)来访问成员,也可通过单个标识符的 using 声明 (using std::string) 或命名空间中所有标识符的 using 指令 (C++) (using namespace std;) 来访问成员。头文件中的代码应始终使用完全限定的命名空间名称。
下面的示例演示了一个命名空间声明和命名空间之外的代码可访问其成员的三种方法。

namespace ContosoData
{
 class ObjectManager
 {
 public:
  void DoSomething() {}
 };
 void Func(ObjectManager) {}
}

使用完全限定名:

ContosoData::ObjectManager mgr;
mgr.DoSomething();
ContosoData::Func(mgr);

使用 using 声明,以将一个标识符引入范围:

using WidgetsUnlimited::ObjectManager;
ObjectManager mgr;
mgr.DoSomething();

使用 using 指令,以将命名空间中的所有内容引入范围:

using namespace WidgetsUnlimited;
ObjectManager mgr;
mgr.DoSomething();
Func(mgr);

using 指令
通过 using 指令,可使用命名空间中的所有名称,而不需要命名空间名称为显式限定符。如果在一个命名空间中使用多个不同的标识符,则在实现文件中使用 using 指令(即*.cpp);如果仅使用一个或两个标识符,则考虑使用声明,以仅将这些标识符而不是命名空间中的所有标识符引入范围。如果本地变量的名称与命名空间变量的名称相同,则隐藏命名空间变量。使命名空间变量具有与全局变量相同的名称是错误的。
注意
using 指令可以放置在 .cpp 文件的顶部(在文件范围内),或放置在类或函数定义内。
一般情况下,避免将 using 指令放置在头文件 (*.h) 中,因为任何包含该标头的文件都会将命名空间中的所有内容引入范围,这将导致非常难以调试的名称隐藏和名称冲突问题。在头文件中,始终使用完全限定名。如果这些名称太长,可以使用命名空间别名将其缩短。(请参阅下文。)
声明命名空间和命名空间成员
通常情况下,在头文件中声明一个命名空间。如果函数实现位于一个单独的文件中,则限定函数名称,如本示例所示。

//contosoData.h
#pragma once
namespace ContosoDataServer
{
 void Foo();
 int Bar();

}
contosodata.cpp 中的函数实现应使用完全限定名,即使将一个 using 指令放置于文件的顶部也是如此:
#include "contosodata.h"
using namespace ContosoDataServer; 

void ContosoDataServer::Foo()
{
 //no qualification because using directive above
 Bar();
}

int ContosoDataServer::Bar(){return 0;}

可以在单个文件中的多个块中声明命名空间,也可在多个文件中声明命名空间。编译器在预处理过程中将各部分联接在一起,产生的命名空间中包含所有部分中声明的所有成员。一个相关示例是在标准库中的每个头文件中声明的 std 命名空间。
指定的命名空间的成员可以在定义的名称的显式限定所声明的命名空间的外部进行定义。但是,定义必须出现在命名空间中的声明位置之后,该命名空间包含在声明的命名空间中。例如:

// defining_namespace_members.cpp
// C2039 expected
namespace V {
  void f();
 }

 void V::f() { }  // ok
 void V::g() { }  // C2039, g() is not yet a member of V

 namespace V {
  void g();
 }
}

当跨多个头文件声明命名空间成员,并且未以正确的顺序包含这些标头时,可能出现此错误。
全局命名空间
如果未在显式命名空间中声明某个标识符,则该标识符属于隐式全局命名空间的一部分。通常情况下,如果可能,尝试避免在全局范围内进行声明,入口点 main 函数除外,它必须位于全局命名空间中。若要显式限定全局标识符,请使用没有名称的范围解析运算符,如 ::SomeFunction(x); 中所示。这将使标识符与任何其他命名空间中具有相同名称的任何内容区分开来,并且还有助于使其他人更轻松地了解你的代码。
Std 命名空间
所有 C++ 标准库类型和函数都在 std 命名空间或嵌套在 std 内的命名空间中进行声明。
嵌套命名空间
可以嵌套命名空间。普通的嵌套命名空间具有对其父级成员的非限定访问权限,而父成员不具有对嵌套命名空间的非限定访问权限(除非它被声明为内联),如下面的示例所示:

namespace ContosoDataServer
{
 void Foo(); 

 namespace Details
 {
  int CountImpl;
  void Ban() { return Foo(); }
 }

 int Bar(){...};
 int Baz(int i) { return Details::CountImpl; } 

}

普通嵌套命名空间可用于封装不属于父命名空间的公共接口的一部分的内部实现详细信息。
内联命名空间 (C++ 11)
与普通嵌套命名空间不同,内联命名空间的成员会被视为父命名空间的成员。这一特性使针对重载函数的依赖于参数的查找可以对父命名空间和嵌套内联命名空间中具有重载的函数起作用。它还可让你在内联命名空间中声明的模板的父命名空间中声明专用化。下面的示例演示在默认情况下,外部代码如何绑定到内联命名空间:

//Header.h
#include <string>

namespace Test
{
 namespace old_ns
 {
  std::string Func() { return std::string("Hello from old"); }
 }

 inline namespace new_ns
 {
  std::string Func() { return std::string("Hello from new"); }
 }
}

#include "header.h"
#include <string>
#include <iostream>

int main()
{
 using namespace Test;
 using namespace std;

 string s = Func();
 std::cout << s << std::endl; // "Hello from new"
 return 0;
}

下面的示例演示如何在内联命名空间中声明的模板的父命名空间中声明专用化:

namespace Parent
{
 inline namespace new_ns
 {
   template <typename T>
   struct C
   {
    T member;
   };
 }
  template<>
  class C<int> {};
}

可以将内联命名空间用作版本控制机制,以管理对库的公共接口的更改。例如,可以创建单个父命名空间,并将接口的每个版本封装到嵌套在父命名空间内的其自己的命名空间中。保留最新或首选的版本的命名空间限定为内联,并因此以父命名空间的直接成员的形式公开。调用 Parent::Class 的客户端代码将自动绑定到新代码。通过使用指向包含该代码的嵌套命名空间的完全限定路径,选择使用较旧版本的客户端仍可以对其进行访问。
Inline 关键字必须应用到编译单元中命名空间的第一个声明中。
下面的示例演示一个接口的两个版本,每个版本位于一个嵌套命名空间中。通过 v_10 接口对 v_20 命名空间进行了某些修改,且该命名空间被标记为内联。使用新库并调用 Contoso::Funcs::Add 的客户端代码将调用 v_20 版本。尝试调用 Contoso::Funcs::Divide 的代码现在将获取一个编译时错误。如果它们确实需要该函数,则仍可以通过显式调用 Contoso::v_10::Funcs::Divide 访问 v_10 版本。

namespace Contoso
{
 namespace v_10
 {
  template <typename T>
  class Funcs
  {
  public:
   Funcs(void);
   T Add(T a, T b);
   T Subtract(T a, T b);
   T Multiply(T a, T b);
   T Divide(T a, T b);
  };
 }

 inline namespace v_20
 {
  template <typename T>
  class Funcs
  {
  public:
   Funcs(void);
   T Add(T a, T b);
   T Subtract(T a, T b);
   T Multiply(T a, T b);
   std::vector<double> Log(double);
   T Accumulate(std::vector<T> nums);
  };
 }
}

命名空间别名
命名空间名称必须是唯一的,这意味着通常它们不应太短。如果名称的长度使代码难以阅读,或在不能使用 using 指令的头文件中进行键入单调乏味,则可以使用用作实际名称的缩写的命名空间别名。例如:

namespace a_very_long_namespace_name { class Foo {}; }
namespace AVLNN = a_very_long_namespace_name;
void Bar(AVLNN::Foo foo){ }

匿名或未命名的命名空间
可以创建显式命名空间,但不为其提供一个名称:

namespace
{
 int MyFunc(){}
}

这称为未命名的命名空间或匿名命名空间,在你想要使变量声明对于其他文件中的代码不可见(即为它们提供内部链接),而不必创建已命名的命名空间时非常有用。同一文件中的所有代码都可以看到未命名的命名空间中的标识符,但这些标识符以及命名空间本身在该文件外部(或更准确地说,在翻译单元外部)不可见。

(0)

相关推荐

  • C++命名空间实例解析

    命名空间是C++非常重要的概念,本文就以实例形式对其进行深入分析,具体内容如下: 通常来说,在C++中,命名空间(namespace)的目的是为了防止名字冲突.每个命名空间是一个作用域,在所有命名空间之外,还存在一个全局命名空间(global namespace),全局命名空间以隐式的方式声明,它并没有名字.在命名空间机制中,原来的全局变量,就是位于全局命名空间中(可以用::member的形式表示). 一.定义命名空间 1.每个命名空间都是一个作用域 和其他作用域类似,在命名空间中的每个名字必须

  • C++编程中的命名空间基本知识讲解

    命名空间是一个声明性区域,为其内部的标识符(类型.函数和变量等的名称)提供一个范围.命名空间用于将代码组织到逻辑组中,还可用于避免名称冲突,尤其是在基本代码包括多个库时.命名空间范围内的所有标识符彼此可见,而没有任何限制.命名空间之外的标识符可通过使用每个标识符的完全限定名(例如 std::vector<std::string> vec;)来访问成员,也可通过单个标识符的 using 声明 (using std::string) 或命名空间中所有标识符的 using 指令 (C++) (usi

  • 解读Python编程中的命名空间与作用域

    变量是拥有匹配对象的名字(标识符).命名空间是一个包含了变量名称们(键)和它们各自相应的对象们(值)的字典. 一个Python表达式可以访问局部命名空间和全局命名空间里的变量.如果一个局部变量和一个全局变量重名,则局部变量会覆盖全局变量. 每个函数都有自己的命名空间.类的方法的作用域规则和通常函数的一样. Python会智能地猜测一个变量是局部的还是全局的,它假设任何在函数内赋值的变量都是局部的. 因此,如果要给全局变量在一个函数里赋值,必须使用global语句. global VarName的

  • Python中的集合类型知识讲解

    集合类型         数学上,,把set称做由不同的元素组成的集合,集合(set)的成员通常被称做集合元素(set elements).Python把这个概念引入到它的集合类型对象里.集合对象是一组无序排列的可哈希的值,集合成员可以做字典中的键.数学集合转为Python的集合对象很有效,集合关系测试和union.intersection等操作符在Python里也同样如我们所预想地那样工作.         和其他容器类型一样,集合支持用in和not in操作符检查成员,由len()内建函数得

  • 详解C++编程中的变量相关知识

    在程序运行期间其值可以改变的量称为变量.一个变量应该有一个名字,并在内存中占据一定的存储单元,在该存储单元中存放变量的值.请注意区分变量名和变量值这两个不同的概念,见图 变量名规则 先介绍标识符的概念.和其他高级语言一样,用来标识变量.符号常量.函数.数组.类型等实体名字的有效字符序列称为标识符(identifier).简单地说,标识符就是一个名字.变量名是标识符的一种,变量的名字必须遵循标识符的命名规则. C++规定标识符只能由字母.数字和下划线3种字符组成,且第一个字符必须为字母或下划线.下

  • Java多线程编程中synchronized关键字的基础用法讲解

    多线程编程中,最关键.最关心的问题应该就是同步问题,这是一个难点,也是核心. 从jdk最早的版本的synchronized.volatile,到jdk 1.5中提供的java.util.concurrent.locks包中的Lock接口(实现有ReadLock,WriteLock,ReentrantLock),多线程的实现也是一步步走向成熟化.   同步,它是通过什么机制来控制的呢?第一反应就是锁,这个在学习操作系统与数据库的时候,应该都已经接触到了.在Java的多线程程序中,当多个程序竞争同一

  • 实例讲解Java的设计模式编程中责任链模式的运用

    定义:使多个对象都有机会处理请求,从而避免了请求的发送者和接收者之间的耦合关系.将这些对象连成一条链,并沿着这条链传递该请求,直到有对象处理它为止. 类型:行为类模式 类图: 首先来看一段代码: public void test(int i, Request request){ if(i==1){ Handler1.response(request); }else if(i == 2){ Handler2.response(request); }else if(i == 3){ Handler3

  • Python面向对象编程中的类和对象学习教程

    Python中一切都是对象.类提供了创建新类型对象的机制.这篇教程中,我们不谈类和面向对象的基本知识,而专注在更好地理解Python面向对象编程上.假设我们使用新风格的python类,它们继承自object父类. 定义类 class 语句可以定义一系列的属性.变量.方法,他们被该类的实例对象所共享.下面给出一个简单类定义: class Account(object): num_accounts = 0 def __init__(self, name, balance): self.name =

  • python3爬虫中引用Queue的实例讲解

    我们去一个受欢迎的地方买东西,难免会需要排队等待.如果有多个窗口的话,就会有不同队列的产生,当然每个队伍的人数也会出现参差不齐的现象.我们今天所要说的Queue就可以理解成生活中的排队现象.那么结合我们所要用的爬虫知识,应该怎么在Queue中应用呢?接下来就开始今天的内容学习: 队列这种东西大家应该都知道,就是一个先进先出的数据结构,而Python的标准库中提供了一个线程安全的队列,也就是说该模块是适用于多线程编程的先进先出(first-in,first-out,FIFO)数据结构,可以用来在生

  • Android编程中activity的完整生命周期实例详解

    本文实例分析了Android编程中activity的完整生命周期.分享给大家供大家参考,具体如下: android中 activity有自己的生命周期,对这些知识的学习可以帮助我们在今后写程序的时候,更好的理解其中遇到的一些错误.这篇文章很长,希望不要耽误大家的时间- 今天不会涉及太多关于activity栈的东西,主要说activity自身的生命周期 区分几个概念 1 Activity 官方解释为 "An Activity is an application component that pro

  • 举例解析Java的设计模式编程中里氏替换原则的意义

    里氏替换原则,OCP作为OO的高层原则,主张使用"抽象(Abstraction)"和"多态(Polymorphism)"将设计中的静态结构改为动态结构,维持设计的封闭性."抽象"是语言提供的功能."多态"由继承语义实现. 里氏替换原则包含以下4层含义: 子类可以实现父类的抽象方法,但是不能覆盖父类的非抽象方法. 子类中可以增加自己特有的方法. 当子类覆盖或实现父类的方法时,方法的前置条件(即方法的形参)要比父类方法的输入参数更

随机推荐