python编程通过蒙特卡洛法计算定积分详解

想当初,考研的时候要是知道有这么个好东西,计算定积分。。。开玩笑,那时候计算定积分根本没有这么简单的。但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题。下面进入正题。

如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积。下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt

def f(x):
  return x**2 + 4*x*np.sin(x)
def intf(x):
  return x**3/3.0+4.0*np.sin(x) - 4.0*x*np.cos(x)
a = 2;
b = 3;
# use N draws
N= 10000
X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b
Y =f(X)  # CALCULATE THE f(x)
# 蒙特卡洛法计算定积分:面积=宽度*平均高度
Imc= (b-a) * np.sum(Y)/ N;
exactval=intf(b)-intf(a)
print "Monte Carlo estimation=",Imc, "Exact number=", intf(b)-intf(a)
# --How does the accuracy depends on the number of points(samples)? Lets try the same 1-D integral
# The Monte Carlo methods yield approximate answers whose accuracy depends on the number of draws.
Imc=np.zeros(1000)
Na = np.linspace(0,1000,1000)
exactval= intf(b)-intf(a)
for N in np.arange(0,1000):
  X = np.random.uniform(low=a, high=b, size=N) # N values uniformly drawn from a to b
  Y =f(X)  # CALCULATE THE f(x)
  Imc[N]= (b-a) * np.sum(Y)/ N;
plt.plot(Na[10:],np.sqrt((Imc[10:]-exactval)**2), alpha=0.7)
plt.plot(Na[10:], 1/np.sqrt(Na[10:]), 'r')
plt.xlabel("N")
plt.ylabel("sqrt((Imc-ExactValue)$^2$)")
plt.show()

>>>

Monte Carlo estimation= 11.8181144118 Exact number= 11.8113589251

从上图可以看出,随着采样点数的增加,计算误差逐渐减小。想要提高模拟结果的精确度有两个途径:其一是增加试验次数N;其二是降低方差σ2. 增加试验次数势必使解题所用计算机的总时间增加,要想以此来达到提高精度之目的显然是不合适的。下面来介绍重要抽样法来减小方差,提高积分计算的精度。

重要性抽样法的特点在于,它不是从给定的过程的概率分布抽样,而是从修改的概率分布抽样,使对模拟结果有重要作用的事件更多出现,从而提高抽样效率,减少花费在对模拟结果无关紧要的事件上的计算时间。比如在区间[a b]上求g(x)的积分,若采用均匀抽样,在函数值g(x)比较小的区间内产生的抽样点跟函数值较大处区间内产生的抽样点的数目接近,显然抽样效率不高,可以将抽样概率密度函数改为f(x),使f(x)与g(x)的形状相近,就可以保证对积分计算贡献较大的抽样值出现的机会大于贡献小的抽样值,即可以将积分运算改写为:

x是按照概率密度f(x)抽样获得的随机变量,显然在区间[a b]内应该有:

因此,可容易将积分值I看成是随机变量 Y = g(x)/f(x)的期望,式子中xi是服从概率密度f(x)的采样点

下面的例子采用一个正态分布函数f(x)来近似g(x)=sin(x)*x,并依据正态分布选取采样值计算区间[0 pi]上的积分个∫g(x)dx

# -*- coding: utf-8 -*-
# Example: Calculate ∫sin(x)xdx

# The function has a shape that is similar to Gaussian and therefore
# we choose here a Gaussian as importance sampling distribution.
from scipy import stats
from scipy.stats import norm
import numpy as np
import matplotlib.pyplot as plt
mu = 2;
sig =.7;
f = lambda x: np.sin(x)*x
infun = lambda x: np.sin(x)-x*np.cos(x)
p = lambda x: (1/np.sqrt(2*np.pi*sig**2))*np.exp(-(x-mu)**2/(2.0*sig**2))
normfun = lambda x: norm.cdf(x-mu, scale=sig)

plt.figure(figsize=(18,8)) # set the figure size
# range of integration
xmax =np.pi
xmin =0
# Number of draws
N =1000
# Just want to plot the function
x=np.linspace(xmin, xmax, 1000)
plt.subplot(1,2,1)
plt.plot(x, f(x), 'b', label=u'Original $x\sin(x)$')
plt.plot(x, p(x), 'r', label=u'Importance Sampling Function: Normal')
plt.xlabel('x')
plt.legend()
# =============================================
# EXACT SOLUTION
# =============================================
Iexact = infun(xmax)-infun(xmin)
print Iexact
# ============================================
# VANILLA MONTE CARLO
# ============================================
Ivmc = np.zeros(1000)
for k in np.arange(0,1000):
  x = np.random.uniform(low=xmin, high=xmax, size=N)
  Ivmc[k] = (xmax-xmin)*np.mean(f(x))
# ============================================
# IMPORTANCE SAMPLING
# ============================================
# CHOOSE Gaussian so it similar to the original functions

# Importance sampling: choose the random points so that
# more points are chosen around the peak, less where the integrand is small.
Iis = np.zeros(1000)
for k in np.arange(0,1000):
  # DRAW FROM THE GAUSSIAN: xis~N(mu,sig^2)
  xis = mu + sig*np.random.randn(N,1);
  xis = xis[ (xis<xmax) & (xis>xmin)] ;
  # normalization for gaussian from 0..pi
  normal = normfun(np.pi)-normfun(0)   # 注意:概率密度函数在采样区间[0 pi]上的积分需要等于1
  Iis[k] =np.mean(f(xis)/p(xis))*normal  # 因此,此处需要乘一个系数即p(x)在[0 pi]上的积分
plt.subplot(1,2,2)
plt.hist(Iis,30, histtype='step', label=u'Importance Sampling');
plt.hist(Ivmc, 30, color='r',histtype='step', label=u'Vanilla MC');
plt.vlines(np.pi, 0, 100, color='g', linestyle='dashed')
plt.legend()
plt.show()

从图中可以看出曲线sin(x)*x的形状和正态分布曲线的形状相近,因此在曲线峰值处的采样点数目会比曲线上位置低的地方要多。精确计算的结果为pi,从上面的右图中可以看出:两种方法均计算定积分1000次,靠近精确值pi=3.1415处的结果最多,离精确值越远数目越少,显然这符合常规。但是采用传统方法(红色直方图)计算出的积分值方的差明显比采用重要抽样法(蓝色直方图)要大。因此,采用重要抽样法计算可以降低方差,提高精度。另外需要注意的是:关于函数f(x)的选择会对计算结果的精度产生影响,当我们选择的函数f(x)与g(x)相差较大时,计算结果的方差也会加大。

总结

以上就是本文关于python编程通过蒙特卡洛法计算定积分详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

python实现机械分词之逆向最大匹配算法代码示例

K-近邻算法的python实现代码分享

Python实现字符串匹配算法代码示例

如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

(0)

相关推荐

  • python 求定积分和不定积分示例

    求f(x) = sin(x)/x 的不定积分和负无穷到正无穷的定积分 sin(x)/x 的不定积分是信号函数sig ,负无穷到正无穷的定积分为pi import math import numpy as np import matplotlib.pyplot as plt from sympy import * #用于求导积分等科学计算 def draw_plot_set():#设置画图格式 ax = plt.gca() #改变坐标轴位置 ax.spines['right'].set_color

  • python、Matlab求定积分的实现

    python求定积分 计算 from sympy import * x = symbols('x') print(integrate(sin(2*x)/(1+x**2), (x, 0, 3))) sympy库中integrate函数 integrate(f, (x, lower_bound, upper_bound)) # f-函数,x-变量,lower_bound-下限,upper_bound-上限 但是发现求不出来,如果是sin(2*x)就可以,为什么? matlab求定积分 syms x

  • python编程通过蒙特卡洛法计算定积分详解

    想当初,考研的时候要是知道有这么个好东西,计算定积分...开玩笑,那时候计算定积分根本没有这么简单的.但这确实给我打开了一种思路,用编程语言去解决更多更复杂的数学问题.下面进入正题. 如上图所示,计算区间[a b]上f(x)的积分即求曲线与X轴围成红色区域的面积.下面使用蒙特卡洛法计算区间[2 3]上的定积分:∫(x2+4*x*sin(x))dx # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt

  • Python编程实现蚁群算法详解

    简介 蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来在图中寻找优化路径的机率型算法.它由Marco Dorigo于1992年在他的博士论文中提出,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为.蚁群算法是一种模拟进化算法,初步的研究表明该算法具有许多优良的性质.针对PID控制器参数优化设计问题,将蚁群算法设计的结果与遗传算法设计的结果进行了比较,数值仿真结果表明,蚁群算法具有一种新的模拟进化优化方法的有效性和应用价值. 定义 各个蚂蚁在没有事先告诉

  • Python编程之多态用法实例详解

    本文实例讲述了Python编程之多态用法.分享给大家供大家参考.具体分析如下: 什么是多态?顾名思义,多态就是多种表现形态的意思.它是一种机制.一种能力,而非某个关键字.它在类的继承中得以实现,在类的方法调用中得以体现.多态意味着变量并不知道引用的对象是什么,根据引用对象的不同表现不同的行为方式. 我们先看一个简单的例子,运算符多态: a=34 b=57 print(a+b) a="世界" b="你好" print(a+b) 我们不知道+法运算符左右两个变量是什么类

  • Python编程之序列操作实例详解

    本文实例讲述了Python编程之序列操作.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 序列类型有着相同的访问模式:它的每一个元素可以通过指定一个偏移量的方式得到. 可以通过切片操作一次获得多个元素. 序列的下标偏移量是从0开始到总元素数减一结束. 标准类型操作符一般都能试用与所有的序列类型. 序列类型操作符: --------------------------------------------------------------------------- 序列操作

  • Blender Python编程创建发光材质示例详解

    目录 前言 正文 在 Python 脚本中创建一个着色器 我们的想法 具体代码与注释 创建发光材质 具体调用代码 前言 Blender 并不是唯一一款允许你为场景编程和自动化任务的3D软件; 随着每一个新版本的推出,Blender 正逐渐成为一个可靠的 CG 制作一体化解决方案,从使用油脂铅笔的故事板到基于节点的合成. 事实上,你可以使用 Python 脚本和一些额外的包来批处理你的对象实例化,程序化地生成东西,配置你的渲染设置,甚至获得你当前项目的自定义统计数据,这是非常棒的功能! 这是一种减

  • Python编程之列表操作实例详解【创建、使用、更新、删除】

    本文实例讲述了Python列表操作.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 列表类型也是序列式的数据类型, 可以通过下标或者切片操作来访问某一个或者某一块连续的元素. 列表不仅可以包含Python的标准类型, 而且可以用用户定义的对象作为自己的元素. 列表可以包含不同类型的对象, 列表可以执行pop.empt.sort.reverse等操作. 列表可以添加或者减少元素, 还可以与其他列表结合或者把一个列表拆分成几个. 可以对一个元素或者多个元素执行insert.u

  • Python编程基础之运算符重载详解

    目录 学习目标 一.运算符重载 (一)概述 (二)加法运算重载符 1.概述 2.案例演示 总结 学习目标 1.掌握运算符重载 2.会定制对象字符串的形式 一.运算符重载 (一)概述 运算符重载是通过实现特定的方法使类的实例对象支持Python的各种内置操作 .例如:+运算符是类里提供的__add__这个函数,当调用+实现加法运算的时候,实际上是调用了__add__方法. 方法 说明 何时调用方法 __add__ 加法运算 对象加法:x+y,x+=y __sub__ 减法运算 对象减法:x-y,x

  • Python面向对象编程之继承与多态详解

    本文实例讲述了Python面向对象编程之继承与多态.分享给大家供大家参考,具体如下: Python 类的继承 在OOP(Object Oriented Programming)程序设计中,当我们定义一个class的时候,可以从某个现有的class 继承,新的class称为子类(Subclass),而被继承的class称为基类.父类或超类(Base class.Super class). 我们先来定义一个class Person,表示人,定义属性变量 name 及 sex (姓名和性别): 定义一

  • Python黑帽编程 3.4 跨越VLAN详解

    VLAN(Virtual Local Area Network),是基于以太网交互技术构建的虚拟网络,既可以将同一物理网络划分成多个VALN,也可以跨越物理网络障碍,将不同子网中的用户划到同一个VLAN中.图2是一个VLAN划分的例子. 图2 实现VLAN的方式有很多种,基于交换设备的VLAN划分,一般有两种: l 基于交换机的端口划分 l 基于IEEE 802.1q协议,扩展以太网帧格式 基于第二层的VLAN技术,有个Trunking的概念,Trunking是用来在不同的交换机之间进行连接,以

  • Python并发编程线程消息通信机制详解

    目录 1 Event事件 2 Condition 3 Queue队列 4 总结一下 前面我已经向大家介绍了,如何使用创建线程,启动线程.相信大家都会有这样一个想法,线程无非就是创建一下,然后再start()下,实在是太简单了. 可是要知道,在真实的项目中,实际场景可要我们举的例子要复杂的多得多,不同线程的执行可能是有顺序的,或者说他们的执行是有条件的,是要受控制的.如果仅仅依靠前面学的那点浅薄的知识,是远远不够的. 那今天,我们就来探讨一下如何控制线程的触发执行. 要实现对多个线程进行控制,其实

随机推荐