android异步消息机制 源码层面彻底解析(1)

Handler、Message、Loopler、MessageQueen

首先看一下我们平常使用Handler的一个最常见用法。

Handler handler =new Handler(){
    @Override
    public void handleMessage(Message msg) {
      super.handleMessage(msg);
      //这里进行一些UI操作等处理
    }

     new Thread(new Runnable() {
      @Override
      public void run() {
        Message message = Message.obtain();
        ........
        handler.sendMessage(message);
      }
    });
  };

看一下handler的构造函数的源码

public Handler() {
  this(null, false);
}
//他会调用本类中的如下构造函数
public Handler(Callback callback, boolean async) {
    if (FIND_POTENTIAL_LEAKS) {
      final Class<? extends Handler> klass = getClass();
      if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
          (klass.getModifiers() & Modifier.STATIC) == 0) {
        Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
          klass.getCanonicalName());
      }
    }

    mLooper = Looper.myLooper();
    if (mLooper == null) {
      throw new RuntimeException(
        "Can't create handler inside thread that has not called Looper.prepare()");
    }
    mQueue = mLooper.mQueue;
    mCallback = callback;
    mAsynchronous = async;
  }

看到当mLooper == null时会抛一个“Can't create handler inside thread that has not called Looper.prepare()”这个异常,所以我们在创建handler实例前首先需要调用Looper.prepare()

public static void prepare() {
    prepare(true);
}
//将looper保存到ThreadLocal中,这里可以把ThreadLocal理解为一个以当前线程为键的Map,所以一个线程中只会有一个looper
private static void prepare(boolean quitAllowed) {
  if (sThreadLocal.get() != null) {
   throw new RuntimeException("Only one Looper may   be created per thread");
    }
  sThreadLocal.set(new Looper(quitAllowed));
}
//我们看到在new Looper(quitAllowed)中,创建了一个消息队列MessageQueen
private Looper(boolean quitAllowed) {
  mQueue = new MessageQueue(quitAllowed);
  mThread = Thread.currentThread();
}

接下来我们看handler.sendMessage(message)这个方法,从字面意思就是将信息发送出去。一般sendMessage累的方法最终都会调用sendMessageAtTime(Message msg, long uptimeMillis)这个方法

public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
    MessageQueue queue = mQueue;
    if (queue == null) {
      RuntimeException e = new RuntimeException(
          this + " sendMessageAtTime() called with no mQueue");
      Log.w("Looper", e.getMessage(), e);
      return false;
    }
    return enqueueMessage(queue, msg, uptimeMillis);
  }

我们看到最终会执行enqueueMessage(queue, msg, uptimeMillis)这个方法

private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
    msg.target = this;
    if (mAsynchronous) {
      msg.setAsynchronous(true);
    }
    return queue.enqueueMessage(msg, uptimeMillis);
  }

最终又会调用MessageQueen中的queue.enqueueMessage(msg, uptimeMillis)这个方法,这里的queue就是looper构造方法中创建的那个消息队列

//MessageQueen的enqueueMessage方法
  boolean enqueueMessage(Message msg, long when) {
    if (msg.target == null) {
      throw new IllegalArgumentException("Message must have a target.");
    }
    if (msg.isInUse()) {
      throw new IllegalStateException(msg + " This message is already in use.");
    }

    synchronized (this) {
      if (mQuitting) {
        IllegalStateException e = new IllegalStateException(
            msg.target + " sending message to a Handler on a dead thread");
        Log.w(TAG, e.getMessage(), e);
        msg.recycle();
        return false;
      }

      msg.markInUse();
      msg.when = when;
      Message p = mMessages;
      boolean needWake;
      if (p == null || when == 0 || when < p.when) {
        // New head, wake up the event queue if blocked.
        msg.next = p;
        mMessages = msg;
        needWake = mBlocked;
      } else {
        // Inserted within the middle of the queue. Usually we don't have to wake
        // up the event queue unless there is a barrier at the head of the queue
        // and the message is the earliest asynchronous message in the queue.
        needWake = mBlocked && p.target == null && msg.isAsynchronous();
        Message prev;
        for (;;) {
          prev = p;
          p = p.next;
          if (p == null || when < p.when) {
            break;
          }
          if (needWake && p.isAsynchronous()) {
            needWake = false;
          }
        }
        msg.next = p; // invariant: p == prev.next
        prev.next = msg;
      }

      // We can assume mPtr != 0 because mQuitting is false.
      if (needWake) {
        nativeWake(mPtr);
      }
    }
    return true;
  }

MessageQueen虽然名字是一个队列,但实质上他是一个单向链表,这个结构能快速进行插入和删除操作。从上面源码可以看出来,主要是按照发送消息的时间顺序将msg插入到消息队列中。接下来我们就需要从消息队列中取出msg了。这时候就需要调用Looper.loop()方法。

public static void loop() {
    final Looper me = myLooper();
    if (me == null) {
      throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
    }
    final MessageQueue queue = me.mQueue;

    // Make sure the identity of this thread is that of the local process,
    // and keep track of what that identity token actually is.
    Binder.clearCallingIdentity();
    final long ident = Binder.clearCallingIdentity();

    for (;;) {
      //不断从消息队列中取出msg
      Message msg = queue.next(); // might block
      if (msg == null) {
        // No message indicates that the message queue is quitting.
        return;
      }

      // This must be in a local variable, in case a UI event sets the logger
      Printer logging = me.mLogging;
      if (logging != null) {
        logging.println(">>>>> Dispatching to " + msg.target + " " +
            msg.callback + ": " + msg.what);
      }
      //将msg交由handler处理
      msg.target.dispatchMessage(msg);

      if (logging != null) {
        logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
      }

      // Make sure that during the course of dispatching the
      // identity of the thread wasn't corrupted.
      final long newIdent = Binder.clearCallingIdentity();
      if (ident != newIdent) {
        Log.wtf(TAG, "Thread identity changed from 0x"
            + Long.toHexString(ident) + " to 0x"
            + Long.toHexString(newIdent) + " while dispatching to "
            + msg.target.getClass().getName() + " "
            + msg.callback + " what=" + msg.what);
      }

      msg.recycleUnchecked();
    }
  }

可以看到Looper.loop()方法通过在一个死循环中调用Message msg = queue.next()将消息不断的从消息队列中取出来。queue.next()方法的作用就是从消息队列中取msg,唯一跳出循环的方式是MessageQueen的next方法返回了null。现在msg已经取出来,下一步就是怎样将他传递给handler了对吧。所以在死循环中还有一个方法msg.target.dispatchMessage(msg) ,而msg.target就是handler,在上面handler的enqueueMessage()方法中传入的msg.target = this,this就是handler本身,接下来就看看handler的dispatchMessage()方法

public void dispatchMessage(Message msg) {
    if (msg.callback != null) {
      handleCallback(msg);
    } else {
      if (mCallback != null) {
        if (mCallback.handleMessage(msg)) {
          return;
        }
      }
      handleMessage(msg);
    }
  }

如果我们采用无参的构造函数创建handler,msg.callback与mCallback均为空,所以我们会调用handleMessage(msg),这样文章开头的那个实例整个流程就走完了,handleMessage(msg)会在handler实例所在的线程中执行。

//当我们通过这种方式创建handler时,dispatchMessage中的mCallback就不为null
 public Handler(Callback callback) {
    this(callback, false);
 }
//Callback是一个接口,里面正好也有我们需要的handleMessage(Message msg),dispatchMessage中的 if (mCallback != null) 语句内的内容,就是我们需要重写的handleMessage(Message msg)方法
 public interface Callback {
   public boolean handleMessage(Message msg);
 }
//当我们调用handler.post()方法执行异步任务时
  public final boolean post(Runnable r)
  {
    return sendMessageDelayed(getPostMessage(r), 0);
  }
//getPostMessage(r)这个方法中我们看到给m.callback赋值了,就是我们传入的runnable接口
  private static Message getPostMessage(Runnable r) {
    Message m = Message.obtain();
    m.callback = r;
    return m;
  }
//最后在handleCallback方法中我们执行了它的run方法,这也就解释了为什么在子线程中可以用handler.post(Runnable r)更新UI
  private static void handleCallback(Message message) {
    message.callback.run();
  }

总结

梳理整个执行过程

1.调用Looper.prepare()方法,这是创建handler所必须的。在主线程中由于ActivityThread已经通过Looper.prepareMainLooper()方法创建过looper,所以在主线程中创建handler以前无需创建looper,并通过Looper.loop()来开启主线程的消息循环。

2.通过调用handler.sendMessage(message)方法最终会执行enqueueMessage(queue, msg, uptimeMillis),enqueueMessage又会调用MessageQueen的queue.enqueueMessage(msg, uptimeMillis),这样消息就会被添加到消息队列中。

3.调用Looper.loop()方法在死循环中执行Message msg = queue.next(),不断的将msg从消息队列中取出来,同时执行msg.target.dispatchMessage(msg),将消息传递给handler,由handler来处理,如我们调用的handleMessage就是处理消息的方式之一。

异步处理机制流程图

从子线程进行UI 操作的几种方式

Android 提供了几种途径来从其他线程访问 UI 线程。以下列出了几种有用的方法:

• Activity.runOnUiThread(Runnable)
• View.post(Runnable) 这里的view就是我们需要改变的ui控件
• View.postDelayed(Runnable, long)
• Handler.post(Runnable, long)

但是,随着操作日趋复杂,这类代码也会变得复杂且难以维护。 要通过工作线程处理更复杂的交互,可以考虑在工作线程中使用 Handler 处理来自 UI 线程的消息。当然,最好的解决方案或许是扩展 AsyncTask 类,此类简化了与 UI 进行交互所需执行的工作线程任务。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Android的消息机制

    一.简介 Android的消息机制主要是指Handler的运行机制,那么什么是Handler的运行机制那?通俗的来讲就是,使用Handler将子线程的Message放入主线程的Messagequeue中,在主线程使用. 二.学习内容 学习Android的消息机制,我们需要先了解如下内容. 消息的表示:Message 消息队列:MessageQueue 消息循环,用于循环取出消息进行处理:Looper 消息处理,消息循环从消息队列中取出消息后要对消息进行处理:Handler 平常我们接触的大多是H

  • Android 消息机制详解及实例代码

    Android 消息机制 1.概述 Android应用启动时,会默认有一个主线程(UI线程),在这个线程中会关联一个消息队列(MessageQueue),所有的操作都会被封装成消息队列然后交给主线程处理.为了保证主线程不会退出,会将消息队列的操作放在一个死循环中,程序就相当于一直执行死循环,每循环一次,从其内部的消息队列中取出一个消息,然后回调相应的消息处理函数(handlerMessage),执行完成一个消息后则继续循环,若消息队列为空,线程则会阻塞等待.因此不会退出.如下图所示: Handl

  • android线程消息机制之Handler详解

    android线程消息机制主要由Handler,Looper,Message和MessageQuene四个部分组成.平常在开发中,我们常用来在子线程中通知主线程来更新,其实整个安卓生命周期的驱动都是通过Handler(ActivityThread.H)来实现的. 首先我们先介绍这四个类的作用: Handler:消息的发送者.负责将Message消息发送到MessageQueue中.以及通过Runnable,Callback或者handleMessage()来实现消息的回调处理 Looper:是消

  • Android 消息机制问题总结

    Android的消息机制几乎是面试必问的话题,当然也并不是因为面试,而去学习,更重要的是它在Android的开发中是必不可少的,占着举足轻重的地位,所以弄懂它是很有必要的.下面就来说说最基本的东西. Looper 作用: 关联起Thread 循环取出消息 1.Looper是否可以直接实例化? Looper构造方法是私有的,其中做了两件事 创建一个MessageQueue 得到与之对应的Thread private Looper(boolean quitAllowed) { mQueue = ne

  • Android6.0 消息机制原理解析

    消息都是存放在一个消息队列中去,而消息循环线程就是围绕这个消息队列进入一个无限循环的,直到线程退出.如果队列中有消息,消息循环线程就会把它取出来,并分发给相应的Handler进行处理:如果队列中没有消息,消息循环线程就会进入空闲等待状态,等待下一个消息的到来.在编写Android应用程序时,当程序执行的任务比较繁重时,为了不阻塞UI主线程而导致ANR的发生,我们通常的做法的创建一个子线程来完成特定的任务.在创建子线程时,有两种选择,一种通过创建Thread对象来创建一个无消息循环的子线程:还有一

  • Android编程中的消息机制实例详解

    本文实例讲述了Android编程中的消息机制.分享给大家供大家参考,具体如下: 在分析Android消息机制之前,我们先来看一段代码: public class MainActivity extends Activity implements View.OnClickListener { private TextView stateText; private Button btn; @Override public void onCreate(Bundle savedInstanceState)

  • Android 消息机制以及handler的内存泄露

    Handler 每个初学Android开发的都绕不开Handler这个"坎",为什么说是个坎呢,首先这是Android架构的精髓之一,其次大部分人都是知其然却不知其所以然.今天看到Handler.post这个方法之后决定再去翻翻源代码梳理一下Handler的实现机制. 异步更新UI 先来一个必背口诀"主线程不做耗时操作,子线程不更新UI",这个规定应该是初学必知的,那要怎么来解决口诀里的问题呢,这时候Handler就出现在我们面前了(AsyncTask也行,不过本质

  • Android编程之消息机制实例分析

    本文实例讲述了Android编程之消息机制.分享给大家供大家参考,具体如下: 一.角色描述 1.Looper: 一个线程可以产生一个Looper对象,由它来管理此线程里的Message Queue(消息队列). 2.Handler: 你可以构造Handler对象来与Looper沟通,以便push新消息到Message Queue里:或者接收Looper(从Message Queue取出)所送来的消息. 3. Message Queue(消息队列):用来存放线程放入的消息. 4.线程:UI thr

  • 深入浅析Android消息机制

    在Android中,线程内部或者线程之间进行信息交互时经常会使用消息,这些基础的东西如果我们熟悉其内部的原理,将会使我们容易.更好地架构系统,避免一些低级的错误. 每一个Android应用在启动的时候都会创建一个线程,这个线程被称为主线程或者UI线程,Android应用的所有操作默认都会运行在这个线程中. 但是当我们想要进行数据请求,图片下载,或者其他耗时操作时,是不可能在这个UI线程做的,因为Android在3.0以后的版本已经禁止了这件事情,直接抛出一个异常.所以我们需要一个子线程来处理那些

  • Android消息机制Handler的工作过程详解

    综述 在Android系统中,出于对性能优化的考虑,对于Android的UI操作并不是线程安全的.也就是说若是有多个线程来操作UI组件,就会有可能导致线程安全问题.所以在Android中规定只能在UI线程中对UI进行操作.这个UI线程是在应用第一次启动时开启的,也称之为主线程(Main Thread),该线程专门用来操作UI组件,在这个UI线程中我们不能进行耗时操作,否则就会出现ANR(Application Not Responding)现象.如果我们在子线程中去操作UI,那么程序就回给我们抛

随机推荐