C++ opencv学习之图像像素的逻辑操作

目录
  • 1.API和相关知识
    • 1. rectangele 绘制矩形
    • 2.位运算
  • 2.实例代码
  • 补充:OpenCV--C++图像像素处理-二值化
  • 总结

1.API和相关知识

1. rectangele 绘制矩形

共7个参数
            第1个参数 输入
            第2个参数 矩形左上坐标
            第3个参数 矩形右下坐标
            第4个参数 矩形颜色
            第5个参数 线宽
                            如果参数 >=0,则表示绘制矩形(如为1,表示绘制的矩形边为1个像素)
                            如果参数 < 0,则表示填充矩形(如-1,表示填充整个矩形)
            第6个参数 lineType
                            关于图像锯齿,有几种方式处理
                                不管不顾,就用LINE_4 或者 LINE_8
                                消除锯齿,就用LINE_AA (AA就是反锯齿)
            第7个参数  缩小图像,同时缩短矩形左上顶点与(0,0)位置的距离(一般没用)
                      0表示不变
                      1表示图像*1/2,同时距离(0,0)的x方向和y方向距离*1/2
                      2表示图像*(1/2)^2,同时距离(0,0)的x方向和y方向距离*(1/2)^2

第二种

rectangele
    绘制矩形
        共6个参数
            第1个参数 输入
            第2个参数 矩形的左上点+往对角方向延伸的距离(x1,x2,延伸长度1,延伸长度2)
            第3个参数 矩形颜色
            第4个参数 线宽
                            如果参数 >=0,则表示绘制矩形(如为1,表示绘制的矩形边为1个像素)
                            如果参数 < 0,则表示填充矩形(如-1,表示填充整个矩形)
            第5个参数 lineType
                            关于图像锯齿,有几种方式处理
                                不管不顾,就用LINE_4 或者 LINE_8
                                消除锯齿,就用LINE_AA (AA就是反锯齿)
            第6个参数  缩小图像,同时缩短矩形左上顶点与(0,0)位置的距离
                      0表示不变
                      1表示图像*1/2,同时距离(0,0)的x方向和y方向距离*1/2
                      2表示图像*(1/2)^2,同时距离(0,0)的x方向和y方向距离*(1/2)^2

void QuickDemo::bitwise_demo(Mat& image) {

	Mat m1 = Mat::zeros(Size(256, 256), CV_8UC3);
	Mat m2 = Mat::zeros(Size(256, 256), CV_8UC3);

	//rectangle有两种传参方式,这里分别进行了示范
	rectangle(m1, Point(100, 100), Point(180, 180), Scalar(255, 255, 0), -1, LINE_8,0);

	rectangle(m2, Rect(150, 150, 80, 80), Scalar(0, 255, 255), -1, LINE_8, 0);

	imshow("m1", m1);
	imshow("m2", m2);
}

2.位运算

在opencv中,图像的为运算有4种

  • 异或

bitwise_and(m1, m2, dst);

//bitwise_or(m1, m2, dst);

//bitwise_not(m1, dst);

//bitwise_xor(m1, m2, dst);略

2.实例代码

void QuickDemo::bitwise_demo(Mat& image) {

    Mat m1 = Mat::zeros(Size(256, 256), CV_8UC3);
    Mat m2 = Mat::zeros(Size(256, 256), CV_8UC3);

    rectangle(m1, Point(100, 100), Point(180, 180), Scalar(255, 255, 0), -1, LINE_4,0);

    rectangle(m2, Rect(150, 150, 80, 80), Scalar(0, 255, 255), -1, 0);

    Mat dst;

    bitwise_and(m1, m2, dst);
    //bitwise_or(m1, m2, dst);
    //bitwise_not(m1, dst);
    //bitwise_xor(m1, m2, dst);

    imshow("位运算",dst);
}

补充:OpenCV--C++图像像素处理-二值化

#include<opencv2/opencv.hpp>
#include<iostream>
#include<vector>
using namespace std;
using namespace cv;

int main()
{
	Mat img = imread("colors.jpg");
	if (img.empty()) {
		cout << "图片读取失败" << endl;
	}

	Mat gray;
	cvtColor(img, gray, COLOR_BGR2GRAY);  //将RGB图像img转为灰度图gray

	// 彩图BINARY二值化
	Mat binary, binary_inv;
	threshold(img, binary, 125, 255, THRESH_BINARY);
	threshold(img, binary_inv, 125, 255, THRESH_BINARY_INV);
	imshow("binary", binary);
	imshow("binary_inv", binary_inv);

	//灰度图BINARY二值化
	Mat binary_gray, binary_gray_inv;
	threshold(gray, binary_gray,  125, 255,THRESH_BINARY);
	threshold(gray,  binary_gray_inv,125, 255, THRESH_BINARY_INV);
	imshow("binary_gray", binary_gray);
	imshow("binary_gray_inv", binary_gray_inv);

	//灰度图TOZERO二值化
	Mat tozero_gray, tozero_gray_inv;
	threshold(gray, tozero_gray, 125, 255, THRESH_TOZERO);
	threshold(gray, tozero_gray_inv, 125, 255, THRESH_TOZERO_INV);
	imshow("tozero_gray", binary_gray);
	imshow("tozero_gray_inv", binary_gray_inv);

	//灰度图TRUNC二值化
	Mat trunc_gray;
	threshold(gray, trunc_gray, 125, 255, THRESH_TRUNC);
	imshow("trunc_gray", trunc_gray);

	Mat gray_thr = imread("colors.jpg", IMREAD_GRAYSCALE);
	//灰度图OSTU二值化
	Mat otsu_gray;
	threshold(gray_thr, otsu_gray, 100, 255,THRESH_BINARY |  THRESH_OTSU);
	imshow("trunc_gray", otsu_gray);

	//灰度图triangle二值化
	Mat triangle_gray;
	threshold(gray_thr, triangle_gray, 100, 255, THRESH_BINARY | THRESH_TRIANGLE);
	imshow("triangle_gray", triangle_gray);

	//灰度图自适应二值化
	Mat adapt_mean_gray;
	adaptiveThreshold(gray_thr, adapt_mean_gray, 255, ADAPTIVE_THRESH_MEAN_C, THRESH_BINARY, 55, 0);
	imshow("adapt_mean_gray", adapt_mean_gray);

	Mat adapt_gauss_gray;
	adaptiveThreshold(gray_thr, adapt_gauss_gray, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 55, 0);
	imshow("adapt_gauss_gray", adapt_gauss_gray);

	waitKey(0);
	return 0;
}

总结

到此这篇关于C++ opencv学习之图像像素的逻辑操作的文章就介绍到这了,更多相关C++ opencv图像像素逻辑操作内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++ OpenCV学习之图像像素值统计

    目录 1.常用的像素值统计 2.像素值统计计算 3.图像统计值分析 本课所用API查阅 opencv知识点: 图像像素最小/最大值 - minMaxLoc 图像像素均值/标准差 - meanStdDev 本课所解决的问题: 如何获取图像像素的最小/最大值? 如何获取图像像素的均值/标准差? 通过图像像素统计值我们能干什么? 1.常用的像素值统计 在图像分析的时候,我们经常需要对单通道图像的像素进行统计,以下4种是比较常用的 最小值(min) 最大值(max) 平均值(mean) 标准差(stan

  • C++ opencv学习之图像像素的逻辑操作

    目录 1.API和相关知识 1. rectangele 绘制矩形 2.位运算 2.实例代码 补充:OpenCV--C++图像像素处理-二值化 总结 1.API和相关知识 1. rectangele 绘制矩形 共7个参数            第1个参数 输入            第2个参数 矩形左上坐标            第3个参数 矩形右下坐标            第4个参数 矩形颜色            第5个参数 线宽                            如果参

  • Python OpenCV学习之图像形态学

    目录 背景 一.图像二值化 二.自适应阈值 三.腐蚀 四.卷积核获取 五.膨胀 六.开运算 七.闭运算 八.形态学梯度 九.顶帽运算 十.黑帽运算 总结 背景 形态学处理方法是基于对二进制图像进行处理的,卷积核决定图像处理后的效果:形态学的处理哦本质上相当于对图像做前处理,提取出有用的特征,以便后续的目标识别等任务: 一.图像二值化 定义:将图像的每个像素变成两种值,如0和255: 全局二值化的函数原型: threshold(img,thresh,maxVal,type) img:最好是灰度图像

  • OpenCV学习之图像的分割与修复详解

    目录 背景 一.分水岭法 二.GrabCut法 三.MeanShift法 四.MOG前景背景分离法 五.拓展方法 六.图像修复 总结 背景 图像分割本质就是将前景目标从背景中分离出来.在当前的实际项目中,应用传统分割的并不多,大多是采用深度学习的方法以达到更好的效果:当然,了解传统的方法对于分割的整体认知具有很大帮助,本篇将介绍些传统分割的一些算法: 一.分水岭法 原理图如下: 利用二值图像的梯度关系,设置一定边界,给定不同颜色实现分割: 实现步骤: 标记背景 —— 标记前景 —— 标记未知区域

  • OpenCV学习之图像形态学处理详解

    目录 1.腐蚀操作 2.膨胀操作 3.开闭运算 4.梯度运算 5.Top Hat Black Hat运算 本文是OpenCV图像视觉入门之路的第11篇文章,本文详细的在图像形态学进行了图像处理,例如:腐蚀操作.膨胀操作.开闭运算.梯度运算.Top Hat Black Hat运算等操作. 1.腐蚀操作 从下面代码中可以看到有三幅腐蚀程度不同的图,腐蚀越严重像素就越模糊 import cv2 import numpy as np from numpy import unicode if __name

  • OpenCV学习之图像加噪与滤波的实现详解

    目录 一.实验内容 二.实验环境和配置 三.实验原理及操作 1. 添加噪声 2.噪声二值化 3. 滤波处理 四.实验结果 2.椒盐噪声二值图与白噪声二值图 3.椒盐噪声处理图经处理后图像 4.白噪声处理图经处理后图像 五.结果分析 六.实验源码 一.实验内容 编写一Python程序,要求实现以下功能: 读入一幅图像. 使用两种以上的方法分别向图像中添加噪声. 输出一幅二值图像,图像中未加入噪声的区域为黑色,加入噪声的区域为白色. 使用三种滤波方法对上述添加了噪声的图像进行滤波处理. 输出滤波处理

  • Python OpenCV学习之图像滤波详解

    目录 背景 一.卷积相关概念 二.卷积实战 三.均值滤波 四.高斯滤波 五.中值滤波 六.双边滤波 七.Sobel算子 八.Scharr算子 九.拉普拉斯算子 十.Canny算法 背景 图像滤波的作用简单来说就是将一副图像通过滤波器得到另一幅图像:明确一个概念,滤波器又被称为卷积核,滤波的过程又被称为卷积:实际上深度学习就是训练许多适应任务的滤波器,本质上就是得到最佳的参数:当然在深度学习之前,也有一些常见的滤波器,本篇主要介绍这些常见的滤波器: 一.卷积相关概念 卷积核大小一般为奇数的原因:

  • C++ OpenCV学习之图像金字塔与图像融合详解

    目录 1金字塔 2什么是图像金字塔? 3图像金字塔有什么用? 4OpenCV实战图像金字塔 1 金字塔 平时你听到.见到的金字塔是什么样的? 这样? 还是这样? 实际上除了这些,还有图像金字塔   图像金字塔有什么用?为什么要称作图像金字塔?本文带你研究这些问题. 2 什么是图像金字塔? 正如生物视觉系统会处理分层次的尺寸一样,计算机视觉系统实现多分辨率图像处理的基础是图像金字塔. 考虑这样一个场景:输入系统一幅图像来检测人脸.由于事先并不知道人脸在这张图片中可能的尺寸,所以需要根据输入生成一个

  • OpenCV学习之图像梯度算子详解

    目录 1.Sobel算子 2.Scharr算子 3.laplacian算子 本文是OpenCV图像视觉入门之路的第12篇文章,本文详细的介绍了图像梯度算子的各种操作,例如:Sobel算子Scharr算子laplacian算子等操作. 1.Sobel算子 Sobel算子是一种图像边缘检测算子,它是一种空间滤波器,可以检测图像中的边缘,而梯度运算是一种求导数的方法,可以用来检测图像中的局部变化. import cv2 import numpy as np from numpy import unic

  • Python OpenCV对图像像素进行操作

    目录 遍历并修改图像像素值 图像的加减乘除运算 遍历并修改图像像素值 在使用opencv处理图像时,有时需要对图像的每个像素点进行处理,比如取反.修改值等操作,就需要通过h和w遍历像素.依然以下图为例: 具体代码: import cv2 as cv import numpy as np def image_pixel(image_path: str): img = cv.imread(image_path, cv.IMREAD_COLOR) cv.imshow('input', img) h,

随机推荐