详解python-opencv 常用函数

目录
  • 读取图像
  • 保存图像
  • 缩放图像

读取图像

retval = cv2.imread( filename[, flags] )
  • retval是返回值,其值是读取到的图像。如果未读取到图像,则返回“None”。如果是RGB彩色图像,retval是一个三维数组;如果是灰度图像,是一个二维数组。
  • filename表示要读取的图像的完整文件名。

保存图像

retval = cv2.imwrite( filename, img[, params] )
  • retval是返回值。如果保存成功,则返回逻辑值真(True);如果保存不成功,则返回逻辑值假(False)。
  • filename是要保存的目标文件的完整路径名,包含文件扩展名。

缩放图像

dst = cv2.resize( src, dsize[, fx[, fy[, interpolation]]] )
  • dst代表输出的目标图像,该图像的类型与src相同,其大小为dsize(当该值非零时),或者可以通过src.size()、fx、fy计算得到。
  • src代表需要缩放的原始图像。
  • dsize代表输出图像大小。

补充:opencv(python)常用函数

1、cv2.VideoCapture()函数:

cap = cv2.VideoCapture(0)
VideoCapture()中参数是0,表示打开笔记本的内置摄像头。
cap = cv2.VideoCapture(“…/1.avi”)
VideoCapture(“…/1.avi”),表示参数是视频文件路径则打开视频。

2、cap.isOpened()函数:

返回true表示成功,false表示不成功

3、ret,frame = cap.read()函数:

cap.read()按帧读取视频,ret,frame是获cap.read()方法的两个返回值。其中ret是布尔值,如果读取帧是正确的则返回True,如果文件读取到结尾,它的返回值就为False。frame就是每一帧的图像,是个三维矩阵。

4、cv2.waitKey()函数:

参数是1,表示延时1ms切换到下一帧图像,参数过大如cv2.waitKey(1000),会因为延时过久而卡顿感觉到卡顿。
参数为0,如cv2.waitKey(0)只显示当前帧图像,相当于视频暂停。

5、cap.release()与destroyAllWindows()函数:

cap.release()释放视频,调用destroyAllWindows()关闭所有图像窗口。

到此这篇关于python-opencv 常用函数的文章就介绍到这了,更多相关python-opencv 函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 关于python3 opencv 图像二值化的问题(cv2.adaptiveThreshold函数)

    前一篇研究了opencv二值化方法threshold的使用,但是这个方法也存在一定的局限性,假如有一张图存在明显的明暗不同的区域,如下图 可以看到左边部分因为整体偏暗,导致二值化后变成全黑,丢失了所有细节,这显然不是我们想要的结果. 原因threshold函数使用一个阈值对图像进行二值化,导致小于这个阈值的像素点全都变成0.因此使用一个阈值的二值化方法并不适用于上面的这张图.那怎么搞? 很明显,上面这张图只有左右两个区域明显亮度不同,最简单的方法就是把图分成两个区域,每个区域分别进行二值化,也就

  • Python OpenCV中的resize()函数的使用

    改变图像大小意味着改变尺寸,无论是单独的高或宽,还是两者.也可以按比例调整图像大小. 这里将介绍resize()函数的语法及实例. 语法 函数原型 cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) 参数: 参数 描述 src [必需]原图像 dsize [必需]输出图像所需大小 fx [可选]沿水平轴的比例因子 fy [可选]沿垂直轴的比例因子 interpolation [可选]插值方式 [可选]插值方式 其中插值方式有很多种

  • Python OpenCV 使用滑动条来调整函数参数的方法

    引言 在观察OpenCV中某个函数在不同参数的情况下,所得到的效果的时候,我之前是改一次参数运行一次,这样做起来操作麻烦,效率低下.为了更便捷的观察参数变化时带来的处理效果改变 可以使用滑动条来改变参数 具体思路 使用cv2.createTrackbar()创建滑动条,有几个参数就创建几个 对每个参数定义回调函数 在回调函数中显示图片 注意 滑动条的窗口名称 要与 图片显示的窗口名字相同 代码实现 import cv2 d = 0 color = 0 space = 0 def change_d

  • OpenCV学习记录python实现连通域处理函数

    目录 1.两个函数介绍 1.1什么是连通域 1.2 cv2.connectedComponents() 1.3 cv2.connectedComponentsWithStats() 2.代码实践 3.总结 1.两个函数介绍 总得来说,connectedComponents()仅仅创建了一个标记图(图中不同连通域使用不同的标记,和原图宽高一致),connectedComponentsWithStats()可以完成上面任务,除此之外,还可以返回每个连通区域的重要信息–bounding box, ar

  • Python OpenCV简单的绘图函数使用教程

    目录 1.画直线的函数是cv2.line 2.画矩形的函数是cv2.rectangle 3.画圆函数是cv2.circle 4.画椭圆的函数是cv2.elipes 5.画多边形的函数是cv2.polylines 6.添加文字的函数是cv2.putText 1.画直线的函数是cv2.line cv2.line函数语法: cv2.line(img,start_point,end_point,color,thickness=0) cv2.line函数参数解释: img:需要画的图像 start_poi

  • 详解Python中常用的图片处理函数的使用

    目录 cvtColor函数 split()和merge() threshold()函数 自定义threshold函数进行二值化 色度函数applyColorMap cvtColor函数 这个函数有两个参数 1,src 要进行变换的原图像 2,code 转换代码标识 例子: import cv2 image=cv2.imread("ddd.jpg") image1=cv2.cvtColor(image,cv2.COLOR_BGR2BGRA) cv2.imshow(""

  • 详解Python+OpenCV进行基础的图像操作

    目录 介绍 形态变换 腐蚀 膨胀 创建边框 强度变换 对数变换 线性变换 去噪彩色图像 使用直方图分析图像 介绍 众所周知,OpenCV是一个用于计算机视觉和图像操作的免费开源库. OpenCV 是用 C++ 编写的,并且有数千种优化的算法和函数用于各种图像操作.很多现实生活中的操作都可以使用 OpenCV 来解决.例如视频和图像分析.实时计算机视觉.对象检测.镜头分析等. 许多公司.研究人员和开发人员为 OpenCV 的创建做出了贡献.使用OpenCV 很简单,而且 OpenCV 配备了许多工

  • 详解Python高阶函数

    本文要点 1.什么是高阶函数 2.python中有哪些常用的高阶函数 什么是高阶函数? 在了解什么是高阶函数之前,我们来看几个小例子.我们都知道在 python 中一切皆对象,函数也不例外.比如求绝对值函数 abs,我们可以用一个变量 f 指向 abs 函数,那么当调用 f() 的时候可以得到和 abs() 一样的效果,这说明变量可以指向函数! 同理我们将 abs 指向另一个函数 abs = len,那么 abs 将不再是求绝对值的函数了,abs指向的是求长度的 len 函数.这说明函数名其实就

  • 详解python算法常用技巧与内置库

    近些年随着python的越来越火,python也渐渐成为了很多程序员的喜爱.许多程序员已经开始使用python作为第一语言来刷题. 最近我在用python刷题的时候想去找点python的刷题常用库api和刷题技巧来看看.类似于C++的STL库文档一样,但是很可惜并没有找到,于是决定结合自己的刷题经验和上网搜索做一份文档出来,供自己和大家观看查阅. 1.输入输出: 1.1 第一行给定两个值n,m,用空格分割,第一个n决定接下来有n行的输入,m决定每一行有多少个数字,m个数字均用空格分隔. 解决办法

  • 详解Python OpenCV数字识别案例

    前言 实践是检验真理的唯一标准. 因为觉得一板一眼地学习OpenCV太过枯燥,于是在网上找了一个以项目为导向的教程学习.话不多说,动手做起来. 一.案例介绍 提供信用卡上的数字模板: 要求:识别出信用卡上的数字,并将其直接打印在原图片上.虽然看起来很蠢,但既然可以将数字打印在图片上,说明已经成功识别数字,因此也可以将其转换为数字文本保存.车牌号识别等项目的思路与此案例类似. 示例: 原图 处理后的图 二.步骤 大致分为如下几个步骤: 1.模板读入 2.模板预处理,将模板数字分开,并排序 3.输入

  • 详解python opencv图像混合算术运算

    目录 图片相加 cv2.add() 按位运算 图片相加 cv2.add() 要叠加两张图片,可以用 cv2.add() 函数,相加两幅图片的形状(高度 / 宽度 / 通道数)必须相同.         numpy中可以直接用res = img + img1相加,但这两者的结果并不相同(看下边代码):         add()两个图片进行加和,大于255的使用255计数.         numpy会对结果取256(相当于255+1)的模: import numpy as np import c

  • 详解Python中高阶函数(map,filter,reduce,sorted)的使用

    目录 什么是高阶函数 自定义一个高阶函数 常用的内置高阶函数 map函数 参数说明 功能 实例 filter函数 功能 实例 reduce函数 功能 实例 sorted函数 参数说明 功能 实例 sort和sorted 总结 什么是高阶函数 高阶函数就是能够把函数当成参数传递的函数就是高阶函数,换句话说如果一个函数的参数是函数,那么这个函数就是一个高阶函数. 高阶函数可以是你使用def关键字自定义的函数,也有Python系统自带的内置高阶函数. 自定义一个高阶函数 我们下面的例子中,函数 sen

  • 详解Python+OpenCV实现图像二值化

    目录 一.图像二值化 1.效果 2.源码 二.图像二值化(调节阈值) 1.源码一 2.源码二 一.图像二值化 1.效果 2.源码 import cv2 import numpy as np import matplotlib.pyplot as plt # img = cv2.imread('test.jpg') #这几行是对图像进行降噪处理,但事还存在一些问题. # dst = cv2.fastNlMeansDenoisingColored(img,None,10,10,7,21) # plt

  • 详解python中groupby函数通俗易懂

    一.groupby 能做什么? python中groupby函数主要的作用是进行数据的分组以及分组后地组内运算! 对于数据的分组和分组运算主要是指groupby函数的应用,具体函数的规则如下: df[](指输出数据的结果属性名称).groupby([df[属性],df[属性])(指分类的属性,数据的限定定语,可以有多个).mean()(对于数据的计算方式--函数名称) 举例如下: print(df["评分"].groupby([df["地区"],df["类

  • 详解Python+opencv裁剪/截取图片的几种方式

    前言 在计算机视觉任务中,如图像分类,图像数据集必不可少.自己采集的图片往往存在很多噪声或无用信息会影响模型训练.因此,需要对图片进行裁剪处理,以防止图片边缘无用信息对模型造成影响.本文介绍几种图片裁剪的方式,供大家参考. 一.手动单张裁剪/截取 selectROI:选择感兴趣区域,边界框框选x,y,w,h selectROI(windowName, img, showCrosshair=None, fromCenter=None): . 参数windowName:选择的区域被显示在的窗口的名字

随机推荐