Netty分布式ByteBuf使用page级别的内存分配解析

目录
  • netty内存分配数据结构
    • 我们看PoolArena中有关chunkList的成员变量
    • 我们看PoolSubpage的属性
    • 我们回到PoolArena的allocate方法
    • 我们跟进allocateNormal
    • 首先会从head节点往下遍历
    • 这里直接通过构造函数创建了一个chunk
    • 首先将参数传入的值进行赋值
    • 我们再回到PoolArena的allocateNormal方法中
    • 跟到allocate(normCapacity)中
    • 我们跟到allocateNode方法中
    • 我们跟进updateParentsAlloc方法
    • 我们再回到PoolArena的allocateNormal方法中
    • 我们跟到initBuf方法中去

前面小节我们剖析过命中缓存的内存分配逻辑, 前提是如果缓存中有数据, 那么缓存中没有数据, netty是如何开辟一块内存进行内存分配的呢?这一小节带大家进行剖析:

netty内存分配数据结构

之前我们介绍过, netty内存分配的单位是chunk, 一个chunk的大小是16MB, 实际上每个chunk, 都以双向链表的形式保存在一个chunkList中, 而多个chunkList, 同样也是双向链表进行关联的, 大概结构如下所示:

在chunkList中, 是根据chunk的内存使用率归到一个chunkList中, 这样, 在内存分配时, 会根据百分比找到相应的chunkList, 在chunkList中选择一个chunk进行内存分配

我们看PoolArena中有关chunkList的成员变量

private final PoolChunkList<T> q050;
private final PoolChunkList<T> q025;
private final PoolChunkList<T> q000;
private final PoolChunkList<T> qInit;
private final PoolChunkList<T> q075;
private final PoolChunkList<T> q100;

这里总共定义了6个chunkList, 并在构造方法将其进行初始化

跟到其构造方法中:

protected PoolArena(PooledByteBufAllocator parent, int pageSize, int maxOrder, int pageShifts, int chunkSize) {
    //代码省略
    q100 = new PoolChunkList<T>(null, 100, Integer.MAX_VALUE, chunkSize);
    q075 = new PoolChunkList<T>(q100, 75, 100, chunkSize);
    q050 = new PoolChunkList<T>(q075, 50, 100, chunkSize);
    q025 = new PoolChunkList<T>(q050, 25, 75, chunkSize);
    q000 = new PoolChunkList<T>(q025, 1, 50, chunkSize);
    qInit = new PoolChunkList<T>(q000, Integer.MIN_VALUE, 25, chunkSize);
    //用双向链表的方式进行连接
    q100.prevList(q075);
    q075.prevList(q050);
    q050.prevList(q025);
    q025.prevList(q000);
    q000.prevList(null);
    qInit.prevList(qInit);
    //代码省略
}

首先通过new PoolChunkList()这种方式将每个chunkList进行创建, 我们以 q050 = new PoolChunkList<T>(q075, 50, 100, chunkSize) 为例进行简单的介绍

q075表示当前q50的下一个节点是q075, 刚才我们讲过ChunkList是通过双向链表进行关联的, 所以这里不难理解

参数50和100表示当前chunkList中存储的chunk的内存使用率都在50%到100%之间, 最后chunkSize为其设置大小

创建完ChunkList之后, 再设置其上一个节点, q050.prevList(q025)为例, 这里代表当前chunkList的上一个节点是q025

以这种方式创建完成之后, chunkList的节点关系变成了如下图所示:

netty中, chunk又包含了多个page, 每个page的大小为8k, 如果要分配16k的内存, 则在在chunk中找到连续的两个page就可以分配, 对应关系如下:

很多场景下, 为缓冲区分配8k的内存也是一种浪费, 比如只需要分配2k的缓冲区, 如果使用8k会造成6k的浪费, 这种情况, netty又会将page切分成多个subpage, 每个subpage大小要根据分配的缓冲区大小而指定, 比如要分配2k的内存, 就会将一个page切分成4个subpage, 每个subpage的大小为2k, 如图:

我们看PoolSubpage的属性

final PoolChunk<T> chunk;
private final int memoryMapIdx;
private final int runOffset;
private final int pageSize;
private final long[] bitmap;
PoolSubpage<T> prev;
PoolSubpage<T> next;
boolean doNotDestroy;
int elemSize;

chunk代表其子页属于哪个chunk

bitmap用于记录子页的内存分配情况

prev和next, 代表子页是按照双向链表进行关联的, 这里分别指向上一个和下一个节点

elemSize属性, 代表的就是这个子页是按照多大内存进行划分的, 如果按照1k划分, 则可以划分出8个子页

简单介绍了内存分配的数据结构, 我们开始剖析netty在page级别上分配内存的流程:

我们回到PoolArena的allocate方法

private void allocate(PoolThreadCache cache, PooledByteBuf<T> buf, final int reqCapacity) {
    //规格化
    final int normCapacity = normalizeCapacity(reqCapacity);
    if (isTinyOrSmall(normCapacity)) {
        int tableIdx;
        PoolSubpage<T>[] table;
        //判断是不是tinty
        boolean tiny = isTiny(normCapacity);
        if (tiny) { // < 512
            //缓存分配
            if (cache.allocateTiny(this, buf, reqCapacity, normCapacity)) {
                return;
            }
            //通过tinyIdx拿到tableIdx
            tableIdx = tinyIdx(normCapacity);
            //subpage的数组
            table = tinySubpagePools;
        } else {
            if (cache.allocateSmall(this, buf, reqCapacity, normCapacity)) {
                return;
            }
            tableIdx = smallIdx(normCapacity);
            table = smallSubpagePools;
        }

        //拿到对应的节点
        final PoolSubpage<T> head = table[tableIdx];

        synchronized (head) {
            final PoolSubpage<T> s = head.next;
            //默认情况下, head的next也是自身
            if (s != head) {
                assert s.doNotDestroy && s.elemSize == normCapacity;
                long handle = s.allocate();
                assert handle >= 0;
                s.chunk.initBufWithSubpage(buf, handle, reqCapacity);

                if (tiny) {
                    allocationsTiny.increment();
                } else {
                    allocationsSmall.increment();
                }
                return;
            }
        }
        allocateNormal(buf, reqCapacity, normCapacity);
        return;
    }
    if (normCapacity <= chunkSize) {
        //首先在缓存上进行内存分配
        if (cache.allocateNormal(this, buf, reqCapacity, normCapacity)) {
            //分配成功, 返回
            return;
        }
        //分配不成功, 做实际的内存分配
        allocateNormal(buf, reqCapacity, normCapacity);
    } else {
        //大于这个值, 就不在缓存上分配
        allocateHuge(buf, reqCapacity);
    }
}

我们之前讲过, 如果在缓存中分配不成功, 则会开辟一块连续的内存进行缓冲区分配, 这里我们先跳过isTinyOrSmall(normCapacity)往后的代码, 下一小节进行分析

首先 if (normCapacity <= chunkSize) 说明其小于16MB, 然后首先在缓存中分配, 因为最初缓存中没有值, 所以会走到allocateNormal(buf, reqCapacity, normCapacity), 这里实际上就是在page级别上进行分配, 分配一个或者多个page的空间

我们跟进allocateNormal

private synchronized void allocateNormal(PooledByteBuf<T> buf, int reqCapacity, int normCapacity) {
    //首先在原来的chunk上进行内存分配(1)
    if (q050.allocate(buf, reqCapacity, normCapacity) || q025.allocate(buf, reqCapacity, normCapacity) ||
        q000.allocate(buf, reqCapacity, normCapacity) || qInit.allocate(buf, reqCapacity, normCapacity) ||
        q075.allocate(buf, reqCapacity, normCapacity)) {
        ++allocationsNormal;
        return;
    }
    //创建chunk进行内存分配(2)
    PoolChunk<T> c = newChunk(pageSize, maxOrder, pageShifts, chunkSize);
    long handle = c.allocate(normCapacity);
    ++allocationsNormal;
    assert handle > 0;
    //初始化byteBuf(3)
    c.initBuf(buf, handle, reqCapacity);
    qInit.add(c);
}

这里主要拆解了如下步骤

1. 在原有的chunk中进行分配

2. 创建chunk进行分配

3. 初始化ByteBuf

首先我们看第一步, 在原有的chunk中进行分配:

if (q050.allocate(buf, reqCapacity, normCapacity) || q025.allocate(buf, reqCapacity, normCapacity) ||
    q000.allocate(buf, reqCapacity, normCapacity) || qInit.allocate(buf, reqCapacity, normCapacity) ||
    q075.allocate(buf, reqCapacity, normCapacity)) {
    ++allocationsNormal;
    return;
}

我们之前讲过, chunkList是存储不同内存使用量的chunk集合, 每个chunkList通过双向链表的形式进行关联, 这里的q050.allocate(buf, reqCapacity, normCapacity)就代表首先在q050这个chunkList上进行内存分配

我们以q050为例进行分析, 跟到q050.allocate(buf, reqCapacity, normCapacity)方法中:

boolean allocate(PooledByteBuf<T> buf, int reqCapacity, int normCapacity) {
    if (head == null || normCapacity > maxCapacity) {
        return false;
    }
    //从head节点往下遍历
    for (PoolChunk<T> cur = head;;) {
        long handle = cur.allocate(normCapacity);
        if (handle < 0) {
            cur = cur.next;
            if (cur == null) {
                return false;
            }
        } else {
            cur.initBuf(buf, handle, reqCapacity);
            if (cur.usage() >= maxUsage) {
                remove(cur);
                nextList.add(cur);
            }
            return true;
        }
    }
}

首先会从head节点往下遍历

long handle = cur.allocate(normCapacity)

表示对于每个chunk, 都尝试去分配

if (handle < 0) 说明没有分配到, 则通过cur = cur.next找到下一个节点继续进行分配, 我们讲过chunk也是通过双向链表进行关联的, 所以对这块逻辑应该不会陌生

如果handle大于0说明已经分配到了内存, 则通过cur.initBuf(buf, handle, reqCapacity)对byteBuf进行初始化

if (cur.usage() >= maxUsage) 代表当前chunk的内存使用率大于其最大使用率, 则通过remove(cur)从当前的chunkList中移除, 再通过nextList.add(cur)添加到下一个chunkList中

我们再回到PoolArena的allocateNormal方法中:

我们看第二步

PoolChunk<T> c = newChunk(pageSize, maxOrder, pageShifts, chunkSize)

这里的参数pageSize是8192, 也就是8k

maxOrder为11

pageShifts为13,   2的13次方正好是8192, 也就是8k

chunkSize为16777216, 也就是16MB

这里的参数值可以通过debug的方式跟踪到

因为我们的示例是堆外内存, newChunk(pageSize, maxOrder, pageShifts, chunkSize)所以会走到DirectArena的newChunk方法中:

protected PoolChunk<ByteBuffer> newChunk(int pageSize, int maxOrder, int pageShifts, int chunkSize) {
    return new PoolChunk<ByteBuffer>(
            this, allocateDirect(chunkSize),
            pageSize, maxOrder, pageShifts, chunkSize);
}

这里直接通过构造函数创建了一个chunk

allocateDirect(chunkSize)这里是通过jdk的api的申请了一块直接内存, 我们跟到PoolChunk的构造函数中:

PoolChunk(PoolArena<T> arena, T memory, int pageSize, int maxOrder, int pageShifts, int chunkSize) {
    unpooled = false;
    this.arena = arena;
    //memeory为一个ByteBuf
    this.memory = memory;
    //8k
    this.pageSize = pageSize;
    //13
    this.pageShifts = pageShifts;
    //11
    this.maxOrder = maxOrder;
    this.chunkSize = chunkSize;
    unusable = (byte) (maxOrder + 1);
    log2ChunkSize = log2(chunkSize);
    subpageOverflowMask = ~(pageSize - 1);
    freeBytes = chunkSize;
    assert maxOrder < 30 : "maxOrder should be < 30, but is: " + maxOrder;
    maxSubpageAllocs = 1 << maxOrder;
    //节点数量为4096
    memoryMap = new byte[maxSubpageAllocs << 1];
    //也是4096个节点
    depthMap = new byte[memoryMap.length];
    int memoryMapIndex = 1;
    //d相当于一个深度, 赋值的内容代表当前节点的深度
    for (int d = 0; d <= maxOrder; ++ d) {
        int depth = 1 << d;
        for (int p = 0; p < depth; ++ p) {
            memoryMap[memoryMapIndex] = (byte) d;
            depthMap[memoryMapIndex] = (byte) d;
            memoryMapIndex ++;
        }
    }
    subpages = newSubpageArray(maxSubpageAllocs);
}

首先将参数传入的值进行赋值

this.memory = memory 就是将参数中创建的堆外内存进行保存, 就是chunk所指向的那块连续的内存, 在这个chunk中所分配的ByteBuf, 都会在这块内存中进行读写

我们重点关注 memoryMap = new byte[maxSubpageAllocs << 1]

和 depthMap = new byte[memoryMap.length] 这两步

首先看 memoryMap = new byte[maxSubpageAllocs << 1]

这里初始化了一个字节数组memoryMap, 大小为maxSubpageAllocs << 1, 也就是4096

depthMap = new byte[memoryMap.length] 同样也是初始化了一个字节数组, 大小为memoryMap的大小, 也就是4096

继续往下分析之前, 我们看chunk的一个层级关系

这是一个二叉树的结构, 左侧的数字代表层级, 右侧代表一块连续的内存, 每个父节点下又拆分成多个子节点, 最顶层表示的内存范围为0-16MB, 其又下分为两层, 范围为0-8MB, 8-16MB, 以此类推, 最后到11层, 以8k的大小划分, 也就是一个page的大小

如果我们分配一个8mb的缓冲区, 则会将第二层的第一个节点, 也就是0-8这个连续的内存进行分配, 分配完成之后, 会将这个节点设置为不可用, 具体逻辑后面会讲解

结合上面的图, 我们再看构造方法中的for循环:

for (int d = 0; d <= maxOrder; ++ d) {
    int depth = 1 << d;
    for (int p = 0; p < depth; ++ p) {
        memoryMap[memoryMapIndex] = (byte) d;
        depthMap[memoryMapIndex] = (byte) d;
        memoryMapIndex ++;
    }
}

实际上这个for循环就是将上面的结构包装成一个字节数组memoryMap, 外层循环用于控制层数, 内层循环用于控制里面每层的节点, 这里经过循环之后, memoryMap和depthMap内容为以下表现形式:

[0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4...........]

这里注意一下, 因为程序中数组的下标是从1开始设置的, 所以第零个节点元素为默认值0

这里数字代表层级, 同时也代表了当前层级的节点, 相同的数字个数就是这一层级的节点数

其中0为2个(因为这里分配时下标是从1开始的, 所以第0个位置是默认值0, 实际上第零层元素只有一个, 就是头结点), 1为2个, 2为4个, 3为8个, 4为16个, n为2的n次方个, 直到11, 也就是11有2的11次方个

我们再回到PoolArena的allocateNormal方法中

private synchronized void allocateNormal(PooledByteBuf<T> buf, int reqCapacity, int normCapacity) {
    //首先在原来的chunk上进行内存分配(1)
    if (q050.allocate(buf, reqCapacity, normCapacity) || q025.allocate(buf, reqCapacity, normCapacity) ||
        q000.allocate(buf, reqCapacity, normCapacity) || qInit.allocate(buf, reqCapacity, normCapacity) ||
        q075.allocate(buf, reqCapacity, normCapacity)) {
        ++allocationsNormal;
        return;
    }
    //创建chunk进行内存分配(2)
    PoolChunk<T> c = newChunk(pageSize, maxOrder, pageShifts, chunkSize);
    long handle = c.allocate(normCapacity);
    ++allocationsNormal;
    assert handle > 0;
    //初始化byteBuf(3)
    c.initBuf(buf, handle, reqCapacity);
    qInit.add(c);
}

我们继续剖析 long handle = c.allocate(normCapacity) 这步

跟到allocate(normCapacity)中

long allocate(int normCapacity) {
    if ((normCapacity & subpageOverflowMask) != 0) {
        return allocateRun(normCapacity);
    } else {
        return allocateSubpage(normCapacity);
    }
}

如果分配是以page为单位, 则走到allocateRun(normCapacity)方法中, 跟进去:

private long allocateRun(int normCapacity) {
    int d = maxOrder - (log2(normCapacity) - pageShifts);
    int id = allocateNode(d);
    if (id < 0) {
        return id;
    }
    freeBytes -= runLength(id);
    return id;
}

int d = maxOrder - (log2(normCapacity) - pageShifts) 表示根据normCapacity计算出图5-8-5中的第几层

int id = allocateNode(d) 表示根据层级关系, 去分配一个节点, 其中id代表memoryMap中的下标

我们跟到allocateNode方法中

private int allocateNode(int d) {
    //下标初始值为1
    int id = 1;
    //代表当前层级第一个节点的初始下标
    int initial = - (1 << d);
    //获取第一个节点的值
    byte val = value(id);
    //如果值大于层级, 说明chunk不可用
    if (val > d) {
        return -1;
    }
    //当前下标对应的节点值如果小于层级, 或者当前下标小于层级的初始下标
    while (val < d || (id & initial) == 0) {
        //当前下标乘以2, 代表下当前节点的子节点的起始位置
        id <<= 1;
        //获得id位置的值
        val = value(id);
        //如果当前节点值大于层数(节点不可用)
        if (val > d) {
            //id为偶数则+1, id为奇数则-1(拿的是其兄弟节点)
            id ^= 1;
            //获取id的值
            val = value(id);
        }
    }
    byte value = value(id);
    assert value == d && (id & initial) == 1 << d : String.format("val = %d, id & initial = %d, d = %d",
            value, id & initial, d);
    //将找到的节点设置为不可用
    setValue(id, unusable);
    //逐层往上标记被使用
    updateParentsAlloc(id);
    return id;
}

这里是实际上是从第一个节点往下找, 找到层级为d未被使用的节点, 我们可以通过注释体会其逻辑

找到相关节点后通过setValue将当前节点设置为不可用, 其中id是当前节点的下标, unusable代表一个不可用的值, 这里是12, 因为我们的层级只有12层, 所以设置为12之后就相当于标记不可用

设置成不可用之后, 通过updateParentsAlloc(id)逐层设置为被使用

我们跟进updateParentsAlloc方法

private void updateParentsAlloc(int id) {
    while (id > 1) {
        //取到当前节点的父节点的id
        int parentId = id >>> 1;
        //获取当前节点的值
        byte val1 = value(id);
        //找到当前节点的兄弟节点
        byte val2 = value(id ^ 1);
        //如果当前节点值小于兄弟节点, 则保存当前节点值到val, 否则, 保存兄弟节点值到val
        //如果当前节点是不可用, 则当前节点值是12, 大于兄弟节点的值, 所以这里将兄弟节点的值进行保存
        byte val = val1 < val2 ? val1 : val2;
        //将val的值设置为父节点下标所对应的值
        setValue(parentId, val);
        //id设置为父节点id, 继续循环
        id = parentId;
    }
}

这里其实是将循环将兄弟节点的值替换成父节点的值, 我们可以通过注释仔细的进行逻辑分析

如果实在理解有困难, 我通过画图帮助大家理解:

简单起见, 我们这里只设置三层:

这里我们模拟其分配场景, 假设只有三层, 其中index代表数组memoryMap的下标, value代表其值, memoryMap中的值就为[0, 0, 1, 1, 2, 2, 2, 2]

我们要分配一个4MB的byteBuf, 在我们调用allocateNode(int d)中传入的d是2, 也就是第二层

根据我们上面分分析的逻辑这里会找到第二层的第一个节点, 也就是0-4mb这个节点, 找到之后将其设置为不可用, 这样memoryMap中的值就为[0, 0, 1, 1, 12, 2, 2, 2]

二叉树的结构就会变为:

注意标红部分, 将index为4的节点设置为了不可用

将这个节点设置为不可用之后, 则会将进行向上设置不可用, 循环将兄弟节点数值较小的节点替换到父节点, 也就是将index为2的节点的值替换成了index的为5的节点的值, 这样数组的值就会变为[0, 1, 2, 1, 12, 2, 2, 2]

二叉树的结构变为:

注意, 这里节点标红仅仅代表节点变化, 并不是当前节点为不可用状态, 真正不可用状态的判断依据是value值为12

这样, 如果再次分配一个4MB内存的ByteBuf, 根据其逻辑, 则会找到第二层的第二个节点, 也就是4-8MB

再根据我们的逻辑, 通过向上设置不可用, index为2就会设置成不可用状态, 将value的值设置为12, 数组数值变为[0, 1, 12, 1, 12, 12, 2, 2]二叉树如下图所示:

这样我们看到, 通过分配两个4mb的byteBuf之后, 当前节点和其父节点都会设置成不可用状态, 当index=2的节点设置为不可用之后, 将不会再找这个节点下的子节点

以此类推, 直到所有的内存分配完毕的时候, index为1的节点, 也会变成不可用状态, 这样所有的page就分配完毕, chunk中再无可用节点

我们再回到PoolArena的allocateNormal方法中

private synchronized void allocateNormal(PooledByteBuf<T> buf, int reqCapacity, int normCapacity) {
    //首先在原来的chunk上进行内存分配(1)
    if (q050.allocate(buf, reqCapacity, normCapacity) || q025.allocate(buf, reqCapacity, normCapacity) ||
        q000.allocate(buf, reqCapacity, normCapacity) || qInit.allocate(buf, reqCapacity, normCapacity) ||
        q075.allocate(buf, reqCapacity, normCapacity)) {
        ++allocationsNormal;
        return;
    }
    //创建chunk进行内存分配(2)
    PoolChunk<T> c = newChunk(pageSize, maxOrder, pageShifts, chunkSize);
    long handle = c.allocate(normCapacity);
    ++allocationsNormal;
    assert handle > 0;
    //初始化byteBuf(3)
    c.initBuf(buf, handle, reqCapacity);
    qInit.add(c);
}

通过以上逻辑我们知道, long handle = c.allocate(normCapacity)这一步, 其实返回的就是memoryMap的一个下标, 通过这个下标, 我们能唯一的定位一块内存

继续往下跟, 通过c.initBuf(buf, handle, reqCapacity)初始化ByteBuf之后, 通过qInit.add(c)将新创建的chunk添加到chunkList中

我们跟到initBuf方法中去

void initBuf(PooledByteBuf<T> buf, long handle, int reqCapacity) {
    int memoryMapIdx = memoryMapIdx(handle);
    int bitmapIdx = bitmapIdx(handle);
    if (bitmapIdx == 0) {
        byte val = value(memoryMapIdx);
        assert val == unusable : String.valueOf(val);
        buf.init(this, handle, runOffset(memoryMapIdx), reqCapacity, runLength(memoryMapIdx),
                 arena.parent.threadCache());
    } else {
        initBufWithSubpage(buf, handle, bitmapIdx, reqCapacity);
    }
}

这里通过memoryMapIdx(handle)找到memoryMap的下标, 其实就是handle的值

bitmapIdx(handle)是有关subPage中使用到的逻辑, 如果是page级别的分配, 这里只返回0, 所以进入到if块中

if中首先断言当前节点是不是不可用状态, 然后通过init方法进行初始化

其中runOffset(memoryMapIdx)表示偏移量, 偏移量相当于分配给缓冲区的这块内存相对于chunk中申请的内存的首地址偏移了多少

参数runLength(memoryMapIdx), 表示根据下标获取可分配的最大长度

我们跟到init中, 这里会走到PooledByteBuf的init方法中:

void init(PoolChunk<T> chunk, long handle, int offset, int length, int maxLength, PoolThreadCache cache) {
    //初始化
    assert handle >= 0;
    assert chunk != null;
    //在哪一块内存上进行分配的
    this.chunk = chunk;
    //这一块内存上的哪一块连续内存
    this.handle = handle;
    memory = chunk.memory;
    this.offset = offset;
    this.length = length;
    this.maxLength = maxLength;
    tmpNioBuf = null;
    this.cache = cache;
}

这里又是我们熟悉的部分, 将属性进行了初始化

以上就是完整的DirectUnsafePooledByteBuf在page级别的完整分配的流程, 逻辑也是非常的复杂, 想真正的掌握熟练, 也需要多下功夫进行调试和剖析,更多关于Netty分布式ByteBuf使用page级别内存分配的资料请关注我们其它相关文章!

(0)

相关推荐

  • Netty分布式ByteBuf使用directArena分配缓冲区过程解析

    目录 directArena分配缓冲区 回到newDirectBuffer中 我们跟到newByteBuf方法中 跟到reuse方法中 跟到allocate方法中 1.首先在缓存上进行分配 2.如果在缓存上分配不成功, 则实际分配一块内存 上一小节简单分析了PooledByteBufAllocator中, 线程局部缓存和arean的相关逻辑, 这一小节简单分析下directArena分配缓冲区的相关过程 directArena分配缓冲区 回到newDirectBuffer中 protected

  • Netty分布式ByteBuf的分类方式源码解析

    目录 ByteBuf根据不同的分类方式 会有不同的分类结果 1.Pooled和Unpooled 2.基于直接内存的ByteBuf和基于堆内存的ByteBuf 3.safe和unsafe 上一小节简单介绍了AbstractByteBuf这个抽象类, 这一小节对其子类的分类做一个简单的介绍 ByteBuf根据不同的分类方式 会有不同的分类结果 我们首先看第一种分类方式 1.Pooled和Unpooled pooled是从一块内存里去取一段连续内存封装成byteBuf 具体标志是类名以Pooled开头

  • Netty分布式ByteBuf使用的底层实现方式源码解析

    目录 概述 AbstractByteBuf属性和构造方法 首先看这个类的属性和构造方法 我们看几个最简单的方法 我们重点关注第二个校验方法ensureWritable(length) 我们跟到扩容的方法里面去 最后将写指针后移length个字节 概述 熟悉Nio的小伙伴应该对jdk底层byteBuffer不会陌生, 也就是字节缓冲区, 主要用于对网络底层io进行读写, 当channel中有数据时, 将channel中的数据读取到字节缓冲区, 当要往对方写数据的时候, 将字节缓冲区的数据写到cha

  • Netty分布式ByteBuf缓冲区分配器源码解析

    目录 缓冲区分配器 以其中的分配ByteBuf的方法为例, 对其做简单的介绍 跟到directBuffer()方法中 我们回到缓冲区分配的方法 然后通过validate方法进行参数验证 缓冲区分配器 顾明思议就是分配缓冲区的工具, 在netty中, 缓冲区分配器的顶级抽象是接口ByteBufAllocator, 里面定义了有关缓冲区分配的相关api 抽象类AbstractByteBufAllocator实现了ByteBufAllocator接口, 并且实现了其大部分功能 和AbstractByt

  • Netty分布式ByteBuf中PooledByteBufAllocator剖析

    目录 前言 PooledByteBufAllocator分配逻辑 逻辑简述 我们回到newDirectBuffer中 有关缓存列表, 我们循序渐进的往下看 我们在static块中看其初始化过程 我们再次跟到initialValue方法中 我们跟到createSubPageCaches这个方法中 最后并保存其类型 前言 上一小节简单介绍了ByteBufAllocator以及其子类UnPooledByteBufAllocator的缓冲区分类的逻辑, 这一小节开始带大家剖析更为复杂的PooledByt

  • Netty分布式ByteBuf使用命中缓存的分配解析

    目录 分析先关逻辑之前, 首先介绍缓存对象的数据结构 我们以tiny类型为例跟到createSubPageCaches方法中 回到PoolArena的allocate方法中 我们跟到normalizeCapacity方法中 回到allocate方法中 allocateTiny是缓存分配的入口 回到acheForTiny方法中 我们简单看下Entry这个类 跟进init方法 上一小节简单分析了directArena内存分配大概流程 ,知道其先命中缓存, 如果命中不到, 则区分配一款连续内存, 这一

  • Netty分布式ByteBuf使用page级别的内存分配解析

    目录 netty内存分配数据结构 我们看PoolArena中有关chunkList的成员变量 我们看PoolSubpage的属性 我们回到PoolArena的allocate方法 我们跟进allocateNormal 首先会从head节点往下遍历 这里直接通过构造函数创建了一个chunk 首先将参数传入的值进行赋值 我们再回到PoolArena的allocateNormal方法中 跟到allocate(normCapacity)中 我们跟到allocateNode方法中 我们跟进updatePa

  • Netty分布式ByteBuf使用subPage级别内存分配剖析

    目录 subPage级别内存分配 我们其中是在构造方法中初始化的, 看构造方法中其初始化代码 在构造方法中创建完毕之后, 会通过循环为其赋值 这里通过normCapacity拿到tableIdx 跟到allocate(normCapacity)方法中 我们跟到PoolSubpage的构造方法中 我们跟到addToPool(head)中 我们跟到allocate()方法中 我们继续跟进findNextAvail方法 我们回到allocate()方法中 我们跟到initBuf方法中 回到initBu

  • Netty分布式ByteBuf使用的回收逻辑剖析

    目录 ByteBuf回收 这里调用了release0, 跟进去 我们首先分析free方法 我们跟到cache中 回到add方法中 我们回到free方法中 前文传送门:ByteBuf使用subPage级别内存分配 ByteBuf回收 之前的章节我们提到过, 堆外内存是不受jvm垃圾回收机制控制的, 所以我们分配一块堆外内存进行ByteBuf操作时, 使用完毕要对对象进行回收, 这一小节, 就以PooledUnsafeDirectByteBuf为例讲解有关内存分配的相关逻辑 PooledUnsafe

  • Netty分布式客户端处理接入事件handle源码解析

    目录 处理接入事件创建handle 我们看其RecvByteBufAllocator接口 跟进newHandle()方法中 继续回到read()方法 我们跟进reset中 前文传送门 :客户端接入流程初始化源码分析 上一小节我们剖析完成了与channel绑定的ChannelConfig初始化相关的流程, 这一小节继续剖析客户端连接事件的处理 处理接入事件创建handle 回到上一章NioEventLoop的processSelectedKey ()方法 private void processS

随机推荐