python生成器用法实例详解

本文实例讲述了python生成器用法。分享给大家供大家参考,具体如下:

1. 生成器

利用迭代器,我们可以在每次迭代获取数据(通过next()方法)时按照特定的规律进行生成。但是我们在实现一个迭代器时,关于当前迭代到的状态需要我们自己记录,进而才能根据当前状态生成下一个数据。为了达到记录当前状态,并配合next()函数进行迭代使用,我们可以采用更简便的语法,即生成器(generator)。生成器是一类特殊的迭代器。

2. 创建生成器方法1

要创建一个生成器,有很多种方法。第一种方法很简单,只要把一个列表生成式的 [ ] 改成 ( )

In [15]: L = [ x*2 for x in range(5)]
In [16]: L
Out[16]: [0, 2, 4, 6, 8]
In [17]: G = ( x*2 for x in range(5))
In [18]: G
Out[18]: <generator object <genexpr> at 0x7f626c132db0>
In [19]:

创建 L 和 G 的区别仅在于最外层的 [ ] 和 ( ) , L 是一个列表,而 G 是一个生成器。我们可以直接打印出列表L的每一个元素,而对于生成器G,我们可以按照迭代器的使用方法来使用,即可以通过next()函数、for循环、list()等方法使用。

In [19]: next(G)
Out[19]: 0
In [20]: next(G)
Out[20]: 2
In [21]: next(G)
Out[21]: 4
In [22]: next(G)
Out[22]: 6
In [23]: next(G)
Out[23]: 8
In [24]: next(G)
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-24-380e167d6934> in <module>()
----> 1 next(G)
StopIteration:
In [25]:
In [26]: G = ( x*2 for x in range(5))
In [27]: for x in G:
  ....:   print(x)
  ....:
0
2
4
6
8
In [28]:

3. 创建生成器方法2

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的 for 循环无法实现的时候,还可以用函数来实现。

我们仍然用上一节提到的斐波那契数列来举例,回想我们在上一节用迭代器的实现方式:

class FibIterator(object):
  """斐波那契数列迭代器"""
  def __init__(self, n):
    """
    :param n: int, 指明生成数列的前n个数
    """
    self.n = n
    # current用来保存当前生成到数列中的第几个数了
    self.current = 0
    # num1用来保存前前一个数,初始值为数列中的第一个数0
    self.num1 = 0
    # num2用来保存前一个数,初始值为数列中的第二个数1
    self.num2 = 1
  def __next__(self):
    """被next()函数调用来获取下一个数"""
    if self.current < self.n:
      num = self.num1
      self.num1, self.num2 = self.num2, self.num1+self.num2
      self.current += 1
      return num
    else:
      raise StopIteration
  def __iter__(self):
    """迭代器的__iter__返回自身即可"""
    return self

注意,在用迭代器实现的方式中,我们要借助几个变量(n、current、num1、num2)来保存迭代的状态。现在我们用生成器来实现一下。

In [30]: def fib(n):
  ....:   current = 0
  ....:   num1, num2 = 0, 1
  ....:   while current < n:
  ....:     num = num1
  ....:     num1, num2 = num2, num1+num2
  ....:     current += 1
  ....:     yield num
  ....:   return 'done'
  ....:
In [31]: F = fib(5)
In [32]: next(F)
Out[32]: 1
In [33]: next(F)
Out[33]: 1
In [34]: next(F)
Out[34]: 2
In [35]: next(F)
Out[35]: 3
In [36]: next(F)
Out[36]: 5
In [37]: next(F)
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-37-8c2b02b4361a> in <module>()
----> 1 next(F)
StopIteration: done

在使用生成器实现的方式中,我们将原本在迭代器__next__方法中实现的基本逻辑放到一个函数中来实现,但是将每次迭代返回数值的return换成了yield,此时新定义的函数便不再是函数,而是一个生成器了。简单来说:只要在def中有yield关键字的 就称为 生成器

此时按照调用函数的方式( 案例中为F = fib(5) )使用生成器就不再是执行函数体了,而是会返回一个生成器对象( 案例中为F ),然后就可以按照使用迭代器的方式来使用生成器了

In [38]: for n in fib(5):
  ....:   print(n)
  ....:
1
1
2
3
5
In [39]:

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIteration的value中:

In [39]: g = fib(5)
In [40]: while True:
  ....:   try:
  ....:     x = next(g)
  ....:     print("value:%d"%x)
  ....:   except StopIteration as e:
  ....:     print("生成器返回值:%s"%e.value)
  ....:     break
  ....:
value:1
value:1
value:2
value:3
value:5
生成器返回值:done
In [41]:

总结

使用了yield关键字的函数不再是函数,而是生成器。(使用了yield的函数就是生成器)

yield关键字有两点作用:

保存当前运行状态(断点),然后暂停执行,即将生成器(函数)挂起
将yield关键字后面表达式的值作为返回值返回,此时可以理解为起到了return的作用
可以使用next()函数让生成器从断点处继续执行,即唤醒生成器(函数)
Python3中的生成器可以使用return返回最终运行的返回值,而Python2中的生成器不允许使用return返回一个返回值(即可以使用return从生成器中退出,但return后不能有任何表达式)。

4. 使用send唤醒

我们除了可以使用next()函数来唤醒生成器继续执行外,还可以使用send()函数来唤醒执行。使用send()函数的一个好处是可以在唤醒的同时向断点处传入一个附加数据。

例子:执行到yield时,gen函数作用暂时保存,返回i的值; temp接收下次c.send(“python”),send发送过来的值,c.next()等价c.send(None)

In [10]: def gen():
  ....:   i = 0
  ....:   while i<5:
  ....:     temp = yield i
  ....:     print(temp)
  ....:     i+=1
  ....:

使用send

n [43]: f = gen()
In [44]: next(f)
Out[44]: 0
In [45]: f.send('haha')
haha
Out[45]: 1
In [46]: next(f)
None
Out[46]: 2
In [47]: f.send('haha')
haha
Out[47]: 3
In [48]:

用next函数

In [11]: f = gen()
In [12]: next(f)
Out[12]: 0
In [13]: next(f)
None
Out[13]: 1
In [14]: next(f)
None
Out[14]: 2
In [15]: next(f)
None
Out[15]: 3
In [16]: next(f)
None
Out[16]: 4
In [17]: next(f)
None
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-17-468f0afdf1b9> in <module>()
----> 1 next(f)
StopIteration:

使用__next__()方法(不常使用)

In [18]: f = gen()
In [19]: f.__next__()
Out[19]: 0
In [20]: f.__next__()
None
Out[20]: 1
In [21]: f.__next__()
None
Out[21]: 2
In [22]: f.__next__()
None
Out[22]: 3
In [23]: f.__next__()
None
Out[23]: 4
In [24]: f.__next__()
None
---------------------------------------------------------------------------
StopIteration               Traceback (most recent call last)
<ipython-input-24-39ec527346a9> in <module>()
----> 1 f.__next__()
StopIteration:

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python面向对象程序设计入门与进阶教程》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python编码操作技巧总结》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python生成器的使用方法

    什么是生成器?生成器是一个包含了特殊关键字yield的函数.当被调用的时候,生成器函数返回一个生成器.可以使用send,throw,close方法让生成器和外界交互. 生成器也是迭代器,但是它不仅仅是迭代器,拥有next方法并且行为和迭代器完全相同.所以生成器也可以用于python的循环中, 生成器如何使用? 首先看一个例子: 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def flatten(nested):    for subli

  • 深入讲解Python中的迭代器和生成器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • Python while、for、生成器、列表推导等语句的执行效率测试

    一个功能的实现,可以用多种语句来实现,比如说:while语句.for语句.生成器.列表推导.内置函数等实现,然而他们的效率并不一样.写了一个小程序来测试它们执行的效率. 测试内容: 将一个数字大小为20万的数字,依次取绝对值,放到列表中,测试重复1千次. 测试程序: 复制代码 代码如下: import time,sys  reps = 1000                #测试重复次数  nums = 200000              #测试时数字大小      def tester(

  • Python中生成器和迭代器的区别详解

    Python中生成器和迭代器的区别(代码在Python3.5下测试): Num01–>迭代器 定义: 对于list.string.tuple.dict等这些容器对象,使用for循环遍历是很方便的.在后台for语句对容器对象调用iter()函数.iter()是python内置函数. iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素.next()也是python内置函数.在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句

  • 详解Python3中的迭代器和生成器及其区别

    介绍 本篇将介绍Python3中的迭代器与生成器,描述可迭代与迭代器关系,并实现自定义类的迭代器模式. 迭代的概念 上一次输出的结果为下一次输入的初始值,重复的过程称为迭代,每次重复即一次迭代,并且每次迭代的结果是下一次迭代的初始值 注:循环不是迭代 while True: #只满足重复,因而不是迭代 print('====>')  迭代器 1.为什么要有迭代器? 对于没有索引的数据类型,必须提供一种不依赖索引的迭代方式. 2.迭代器定义: 迭代器:可迭代对象执行__iter__方法,得到的结果

  • 详解Python3中yield生成器的用法

    任何使用yield的函数都称之为生成器,如: def count(n): while n > 0: yield n #生成值:n n -= 1 另外一种说法:生成器就是一个返回迭代器的函数,与普通函数的区别是生成器包含yield语句,更简单点理解生成器就是一个迭代器. 使用yield,可以让函数生成一个序列,该函数返回的对象类型是"generator",通过该对象连续调用next()方法返回序列值. c = count(5) c.__next__() #python 3.4.3要

  • 简单理解Python中基于生成器的状态机

    简单生成器有许多优点.生成器除了能够用更自然的方法表达一类问题的流程之外,还极大地改善了许多效率不足之处.在 Python 中,函数调用代价不菲:除其它因素外,还要花一段时间解决函数参数列表(除了其它的事情外,还要分析位置参数和缺省参数).初始化框架对象还要采取一些建立步骤(据 Tim Peters 在 comp.lang.python 上所说,有 100 多行 C 语言程序:我自己还没检查 Python 源代码呢).与此相反,恢复一个生成器就相当省力:参数已经解析完了,而且框架对象正"无所事事

  • Python生成器(Generator)详解

    通过列表生成式,我们可以直接创建一个列表.但是,受到内存限制,列表容量肯定是有限的.而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了. 所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间.在Python中,这种一边循环一边计算的机制,称为生成器(Generator). 简单生成器 要创建一个generator,有很

  • 浅谈Python中列表生成式和生成器的区别

    列表生成式语法: [x*x for x in range(0,10)] //列表生成式,这里是中括号 //结果 [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] (x*x for x in range(0,10)) //生成器, 这里是小括号 //结果 <generator object <genexpr> at 0x7f0b072e6140> 二者的区别很明显: 一个直接返回了表达式的结果列表, 而另一个是一个对象,该对象包含了对表达式结果的计算引用, 通

随机推荐