C++踩坑实战之构造和析构函数

目录
  • 前言
  • 构造函数
  • 通过构造函数实现的类型转换
  • 派生类的构造函数
  • 析构函数
  • 继承中的析构函数
  • 应用
  • 总结

前言

我是练习时长一年的 C++ 个人练习生,喜欢野指针、模板报错和未定义行为(undefined behavior)。之前在写设计模式的『工厂模式』时,一脚踩到了构造、继承和 new 组合起来的坑,现在也有时间来整理一下了。

构造函数

众所周知:在创建对象时,防止有些成员没有被初始化导致不必要的错误,在创建对象的时候自动调用构造函数(无声明类型),完成成员的初始化。即:

Class c // 隐式,默认构造函数
Class c = Class() // 显示,默认构造函数
Class c = Class("name") // 显示,非默认构造函数
Class* c = new Class // 隐式,默认构造函数
  • 构造函数执行前,对象不存在
  • 构造函数创建对象后,对象不能调用构造函数
  • 类中如果不定义构造函数,编译器提供有默认的构造函数,无参数,也不执行任何额外的语句
  • 如果提供非默认构造函数,没有默认构造函数将会出错。所以要定义一个不接受任何参数的构造函数,并为成员定义合理的值
  • 一般而言,默认的构造函数是用来对所有类成员做隐式初始化的
  • 自己定义的构造函数一般用使用列表初始化来初始化参数
  • 通过构造函数对成员赋值,要优于通过函数为成员赋值
using namespace std;

class Stone {
private:
    int weight{0};
    double radius{0.0};
public:
    Stone() {
        cout << "Class Stone was created by default creator" << endl;
    };
    Stone(int w, double r) : weight{w}, radius{r} {
        cout << "Class Stone was created by custom creator" << endl;
    }
    void showInfo() {
        cout << "Weight: " << this->weight << ", Radius: "
             << this->radius << endl;
    }
};

int main (){
    // 隐式,成员有默认值
    Stone s1;
    s1.showInfo();
    // 显式,通过列表初始化,为成员赋值
    Stone s2 = Stone(12, 3.3);
    s2.showInfo();
    return 0;
}

通过构造函数实现的类型转换

观察以下的代码,我们发现 Stone s2;s2 = 3.3; 这样将一个 double 类型的数据赋值给类类型并没有出错,这是隐式类型转换,从参数类型到类类型。

using namespace std;

class Stone {
private:
    int weight{0};
    double radius{0.0};
public:
    Stone() {
        cout << this << endl;
        cout << "Class Stone was created by default creator" << endl;
    };
    // 都关闭
    Stone(double r) : radius{r} {
        cout << this << endl;
        cout << "Class Stone was created by parameter radius" << endl;
    }
    Stone(int w) : weight{w} {
        cout << this << endl;
        cout << "Class Stone was created by parameter weight" << endl;
    }
    void showInfo() {
        cout << "Weight: " << this->weight << ", Radius: "
             << this->radius << endl;
    }
};

int main (){
    Stone s2;
    s2 = 3.3;
    s2.showInfo();
    return 0;
}

这是因为:接受一个参数的构造函数允许使用赋值语法来为对象赋值。s2=3.3 会创建 Stock(double) 临时对象,临时对象初始化后,逐成员赋值的方式复制到对象中,在几个构造函数中加入了 cout << this 的语句,由对象的地址不同,可以判断该赋值语句额外生成了临时对象。

为了防止隐式转换带来的危险,可以使用关键字 explicit 关闭这一特性,这样就得显式完成参数类型到类类型的转换:s = Stock(1.3);不过,得保证没有二义性。

using namespace std;

class Stone {
private:
    int weight{0};
    double radius{0.0};
public:
    Stone() {
        cout << this << endl;
        cout << "Class Stone was created by default creator" << endl;
    };
    // 都关闭
    explicit Stone(double r) : radius{r} {
        cout << this << endl;
        cout << "Class Stone was created by parameter radius" << endl;
    }
    explicit Stone(int w) : weight{w} {
        cout << this << endl;
        cout << "Class Stone was created by parameter weight" << endl;
    }
    void showInfo() {
        cout << "Weight: " << this->weight << ", Radius: "
             << this->radius << endl;
    }
};

int main (){
    Stone s2;
    s2 = Stone(3);
    s2.showInfo();
    return 0;
}

上述代码中,如果 Stone(int w) 没有被关闭,那么 s2=3.3 将调用这一构造函数。所以构造函数建议都加上 explicit 声明。

派生类的构造函数

派生类要注意的是:派生类被构造之前,通过调用一个基类的构造函数,创建基类完成基类数据成员的初始化;也就是说,基类对象在程序进入派生类构造函数之前被创建。那么,可以通过初始化列表传递给基类参数,不传递的话,调用基类的默认的构造函数,如下述程序中的:Gem(){}:Stone()。

using namespace std;

class Stone {
private:
    int weight{0};
    double radius{0.0};
public:
    Stone() {
        cout << "This object was in address: " << this << endl;
    };
    Stone(int w, double r) : weight{2}, radius{r} {};
    void showInfo() {
        cout << "Weight: " << this->weight << ", Radius: " << this->radius;
    }
    int getWeight(){
        return this->weight;
    }
    auto getRadius() -> double {
        return this->radius;
    }
};

class Gem : public Stone {
private:
    double price;
public:
    Gem(){};
    Gem(double p, int w, double r) : Stone(w, r), price{p} {};
    void show() {
        cout << "Weight: " << this->getWeight() << ", Radius"
             << this->getRadius();
    }
};

int main (){
    Gem g1; // call default
    Gem g2 = Gem(1300, 1, 2.3); // call custom
    // g.setWeight(130);
    g2.show();
    return 0;
}
  • 首先创建基类对象
  • 派生类通过初始化列表(只能用在构造函数)将基类信息传递给基类的构造函数
  • 派生类构造函数可以为派生类初始化新的成员

析构函数

对象过期时,程序会调用对象的析构函数完成一些清理工作,如释放变量开辟的空间等。如构造函数使用了 new 来申请空间,析构就需要 delete 来释放空间。如果没有特别声明析构函数,编译器会为类提供默认的析构函数,在对象作用域到期、被删除时自动被调用。

如 stock1 = Stock(),这种就申请了一个临时变量,变量消失时会调用析构函数。此外,这种局部变量放在栈区,先入后出,也就是,最后被申请的变量最先被释放。

using namespace std;

class Stone {
private:
    int weight{0};
    double radius{0.0};
public:
    Stone() {
        cout << "This object was in address: " << this << endl;
    };
    ~Stone() {
        cout << this << " Object was deleted." << endl;
    }
};

int main (){
    {
        Stone s1;
        Stone s2;
    }
    return 0;
}

继承中的析构函数

继承类比较容易理解,毕竟都学过面向对象。公有继承的时候,基类的公有成员也是派生类的共有成员;私有成员也是派生类的一部分,不过需要共有或保护方法来访问。但是但是但是,派生类和基类的析构函数之间,也是一个坑。在继承中:

  • 如果一个方法不是虚方法,那么将根据引用类型或指针类型选择执行的方法
  • 如果一个方法是虚方法,将根据指针或引用指向对象的类型选择执行的方法

在继承中,对象的销毁顺序和创建相反。创建时先创建基类,而后创建子类;销毁时,先调用子类的析构函数,而后自动调用基类的析构函数。因此,对于基类而言,建议将析构函数写成虚方法。如果析构不是虚方法,对于以下情况,只有基类的析构被调用;如果析构是虚方法,子类、基类的析构方法都被调用。可以尝试删除下述代码的 virtual 来观察结果:

using namespace std;

class Stone {
private:
    int weight{0};
    double radius{0.0};
public:
    Stone() {
        cout << "This object was in address: " << this << endl;
    };
    Stone(int w, double r) : weight{2}, radius{r} {};
    void showInfo() {
        cout << "Weight: " << this->weight << ", Radius: "
             << this->radius;
    }
    int getWeight(){
        return this->weight;
    }
    auto getRadius() -> double {
        return this->radius;
    }
    virtual ~Stone() {
        cout << "Stone class was deleted." << endl;
    }
};

class Gem : public Stone {
private:
    double price;
public:
    Gem() {};
    Gem(double p, int w, double r) : Stone(w, r), price{p} {};
    void show() {
        cout << "Weight: " << this->getWeight() << ", Radius"
             << this->getRadius();
    }
    ~Gem() {
        cout << "Gem class was deleted." << endl;
    }
};

int main (){
    Stone* s1 = new Gem(2.3, 2, 3.2);
    delete s1;
    // Gem* g1 = new Gem(2.3, 2, 1.2);
    // delete g1;
    return 0;
}

应用

大概常见的坑在上面都记录好了,来看一段我写的危险的程序(我大概抽象了一下),覆盖了:野指针和为定义行为:

using namespace std;

class A {
private:
    int* a;
public:
    int* create() {
        a = new int();
        return a;
    }
    ~A(){
        delete a;
    }
};

int main () {
    A a;
    int* b = a.create();
    delete b;
    return 0;
}
  1. 每次调用 create 都会 new 一次,但只 delete 了一次。
  2. 如果没有调用 create 直接析构,未定义行为
  3. 如果 b 持有了 a.create() 的指针,然后 a 提前析构,那么 b 是野指针
  4. delete b 是没必要的。这样会 double free,也是未定义行为
  5. 上述代码没有区分类里面 new 且 返回的东西要在哪删除合适
  6. 可以让类来管理这一个 new,修改一下 create 的实现或者干脆在构造 new,在析构 delete

总结

到此这篇关于C++踩坑实战之构造和析构函数的文章就介绍到这了,更多相关C++构造和析构函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C++中构造函数与析构函数的调用顺序详解

    前言 在使用构造函数和析构函数时,需要特别注意对它们的调用时间和调用顺序.在一般情况下,调用析构函数的次序正好与调用构造函数的次序相反:最先被调用的构造函数,其对应的(同一对象中的)析构函数最后被调用,而最后被调用的构造函数,其对应的析构函数最先被调用. 简单来说,其构造函数的顺序就一句话: 基类构造函数 -> 成员的构造函数 -> 构造函数体内语句 看下面一个代码示例: #include <iostream> using namespace std; class A { publ

  • C++函数返回值为对象时,构造析构函数的执行细节

    看如下代码: 复制代码 代码如下: #include<iostream>class TestConstructor{public:    TestConstructor()    {        std::cout<<"TestConstructor()"<<std::endl;    }    ~TestConstructor()    {        std::cout<<"~TestConstructor()"

  • 详解C++ 编写String 的构造函数、拷贝构造函数、析构函数和赋值函数

    详解C++ 编写String 的构造函数.拷贝构造函数.析构函数和赋值函数 编写类String 的构造函数.析构函数和赋值函数,已知类String 的原型为: class String { public: String(const char *str = NULL); // 普通构造函数 String(const String &other); // 拷贝构造函数 ~ String(void); // 析构函数 String & operate =(const String &ot

  • C++类成员构造函数和析构函数顺序示例详细讲解

    对象并不是突然建立起来的,创建对象必须时必须同时创建父类以及包含于其中的对象.C++遵循如下的创建顺序: (1)如果某个类具体基类,执行基类的默认构造函数. (2)类的非静态数据成员,按照声明的顺序创建. (3)执行该类的构造函数. 即构造类时,会先构造其父类,然后创建类成员,最后调用本身的构造函数. 下面看一个例子吧 复制代码 代码如下: class c{public:    c(){ printf("c\n"); }protected:private:}; class b {pub

  • c++基础语法:构造函数与析构函数

    说实话c++还是以前在学校的时候用过的,从毕业到现在一直用c嵌入式编程,现在重新搬出C++语法 ,如果理解上有错误的地方,还请路过的朋友多指正--- 构造函数用来构造一个对象,主要完成一些初始化工作,如果类中不提供构造函数,编译器会默认的提供一个默认构造函数(参数为空的构造函数就是默认构造函数) :析构函数是隐式调用的,delete对象时候会自动调用完成对象的清理工作. 现在主要看看继承中的构造函数和析构函数的调用: 复制代码 代码如下: class  A {} :class  B : publ

  • 正确理解C++的构造函数和析构函数

    目录 一.构造函数 二.C++类的内存模型 2.1.只定义成员函数 2.2.往空类中添加静态成员变量 2.3.再加入非静态成员变量 三.this指针 四.析构函数 一.构造函数 首先,由于类只是一个模板,因此我们在定义类时无法对成员变量初始化,比如下面代码就是错误的: class circle{ public: int m_L = 20; // Error:不允许使用数据成员初始值设定项 }; 因此,初始化只能发生在类创建对象的过程中,但是由于访问权限的原因,无法在类外访问某些成员变量,因此下面

  • 详解C++中如何将构造函数或析构函数的访问权限定为private

    今天面试被问到了这个单例模式常用到的技术手段,下面进行分析:         很多情况下要求当前的程序中只有一个object.例如一个程序只有一个和数据库的连接,只有一个鼠标的object.通常我们都将构造函数的声明置于public区段,假如我们将其放入private区段中会发生什么样的后果?这意味着什么?         当我们在程序中声明一个对象时,编译器为调用构造函数(如果有的话),而这个调用将通常是外部的,也就是说它不属于class对象本身的调用,假如构造函数是私有的,由于在class外

  • C++构造函数和析构函数的使用与讲解

    构造函数(constructor) 1.构造函数是种特殊的类成员函数,遵循如下规则: a.函数名与类名必须相同. b.没有返回值 例如: class Obj { ... public: Obj() { ... } }; 2.构造函数可以带参数,也可以重载 class Obj { ... public: Obj() { ... } Obj(int x, int y) { ... } }; 3.构造函数和普通成员函数不一样,一般不显示调用.在创建一个对象时,构造函数自动调用(编译器来完成). 析构函

  • 深入解析C++中的构造函数和析构函数

    构造函数:在类实例化对象时自动执行,对类中的数据进行初始化.构造函数可以从载,可以有多个,但是只能有一个缺省构造函数. 析构函数:在撤销对象占用的内存之前,进行一些操作的函数.析构函数不能被重载,只能有一个. 调用构造函数和析构函数的顺序:先构造的后析构,后构造的先折构.它相当于一个栈,先进后出. 复制代码 代码如下: #include<iostream>#include<string>using namespace std;class Student{ public:  Stud

  • 深入C++中构造函数、拷贝构造函数、赋值操作符、析构函数的调用过程总结

    1 . 用同一个类的源对象构造一个目标对象时,会调用拷贝构造函数来构造目标对象,如果没有定义拷贝构造函数,将调用类的默认拷贝函数来构造目标对象.2 . 当一个函数的返回值为一个类的对象时,如果在调用函数中,没有定义一个对象来接收这个返回对象值,会用返回一个临时对象保存返回对象的值.在被调用函数结束时,这个临时对象被销毁.而当调用函数中有一个接受对象时,就将返回对象赋值给接收对象,这个返回对象在调用函数结束时调用析构函数.3. 当类有一个带有一个参数的构造函数时,可以用这个参数同类型的数据初始化这

随机推荐