python自带缓存lru_cache用法及扩展的使用

目录
  • 1. lru_cache的使用
    • 1.1 参数详解
    • 1.2 基本用法
    • 1.3 进阶用法
  • 2. functiontools.wrap装饰器对lru_cache的影响
    • 2.1 多个装饰器装饰同一函数时的执行顺序
    • 2.2 functiontools.wrap原理
    • 2.3 使用wrap装饰器前后的变化
  • 3. 自制简易的my_cache
    • 3.1 lru_cache提供的功能
    • 3.2 cache的核心部件
    • 3.3 my_cache的实现
  • 4. lru_cache缓存和redis缓存的区别
  • 5. 总结

本篇博客将结合python官方文档和源码详细讲述lru_cache缓存方法是怎么实现, 它与redis缓存的区别是什么, 在使用时碰上functiontools.wrap装饰器时会发生怎样的变化,以及了解它给我们提供了哪些功能然后在其基础上实现我们自制的缓存方法my_cache。

1. lru_cache的使用

1.1 参数详解

以下是lru_cache方法的实现,我们看出可供我们传入的参数有2个maxsize和typed,如果不传则maxsize的默认值为128,typed的默认值为False。其中maxsize参数表示是的被装饰的方法最大可缓存结果数量, 如果是默认值128则表示被装饰方法最多可缓存128个返回结果,如果maxsize传入为None则表示可以缓存无限个结果,你可能会疑惑被装饰方法的n个结果是怎么来的,打个比方被装饰的方法为def add(a, b):当函数被lru_cache装饰时,我们调用add(1, 2)和add(3, 4)将会缓存不同的结果。如果 typed 设置为true,不同类型的函数参数将被分别缓存。例如, f(3) 和 f(3.0) 将被视为不同而分别缓存。

def lru_cache(maxsize=128, typed=False):
    if isinstance(maxsize, int):
        if maxsize < 0:
            maxsize = 0
    elif maxsize is not None:
        raise TypeError('Expected maxsize to be an integer or None')

    def decorating_function(user_function):
        wrapper = _lru_cache_wrapper(user_function, maxsize, typed, _CacheInfo)
        return update_wrapper(wrapper, user_function)

    return decorating_function

1.2 基本用法

在我们编写接口时可能需要缓存一些变动不大的数据如配置信息,我们可能编写如下接口:

@api.route("/user/info", methods=["GET"])
@functools.lru_cache()
@login_require
def get_userinfo_list():
    userinfos = UserInfo.query.all()
    userinfo_list = [user.to_dict() for user in userinfos]
    return jsonify(userinfo_list)

我们缓存了从数据库查询的用户信息,下次再调用这个接口时将直接返回用户信息列表而不需要重新执行一遍数据库查询逻辑,可以有效较少IO次数,加快接口反应速度。

1.3 进阶用法

还是以上面的例子,如果发生用户的删除或者新增时,我们再请求用户接口时仍然返回的是缓存中的数据,这样返回的信息就和我们数据库中的数据就会存在差异,所以当发生用户新增或者删除时,我们需要清除原先的缓存,然后再请求用户接口时可以重新加载缓存。

@api.route("/user/info", methods=["POST"])
@functools.lru_cache()
@login_require
def add_user():
    user = UserInfo(name="李四")
    db.session.add(user)
    db.session.commit()

    # 清除get_userinfo_list中的缓存
    get_userinfo_list = current_app.view_functions["api.get_machine_list"]
    cache_info = get_userinfo_list.cache_info()
    # cache_info 具名元组,包含命中次数 hits,未命中次数 misses ,最大缓存数量 maxsize 和 当前缓存大小 currsize
    # 如果缓存数量大于0则清除缓存
    if cache_info[3] > 0:
     get_userinfo_list.cache_clear()
    return jsonify("新增用户成功")

在上面这个用法中我们,如果我们把lru_cache装饰器和login_require装饰器调换位置时,上述的写法将会报错,这是因为login_require装饰器中用了functiontools.wrap模块进行装饰导致的,具原因我们在下节解释, 如果想不报错得修改成如下写法。

@api.route("/user/info", methods=["POST"])
@login_require
@functools.lru_cache()
def add_user():
    user = UserInfo(name="李四")
    db.session.add(user)
    db.session.commit()

    # 清除get_userinfo_list中的缓存
    get_userinfo_list = current_app.view_functions["api.get_machine_list"]
    cache_info = get_userinfo_list.__wrapped__.cache_info()
    # cache_info 具名元组,包含命中次数 hits,未命中次数 misses ,最大缓存数量 maxsize 和 当前缓存大小 currsize
    # 如果缓存数量大于0则清除缓存
    if cache_info[3] > 0:
     get_userinfo_list.__wrapped__.cache_clear()
    return jsonify("新增用户成功")

2. functiontools.wrap装饰器对lru_cache的影响

在上节我们看到,因为@login_require和@functools.lru_cache()装饰器的顺序不同, 就导致了程序是否报错, 其中主要涉及到两点:

  • login_require装饰器中是否用了@functiontools.wrap()装饰器
  • @login_require和@functools.lru_cache()装饰器的执行顺序问题

当我们了解完这两点后就可以理解上述写法了。

2.1 多个装饰器装饰同一函数时的执行顺序

这里从其他地方盗了一段代码来解释一下,如下:

def decorator_a(func):
    print('Get in decorator_a')
    def inner_a(*args,**kwargs):
        print('Get in inner_a')
        res = func(*args,**kwargs)
        return res
    return inner_a

def decorator_b(func):
    print('Get in decorator_b')
    def inner_b(*args,**kwargs):
        print('Get in inner_b')
        res = func(*args,**kwargs)
        return res
    return inner_b

@decorator_b
@decorator_a
def f(x):
    print('Get in f')
    return x * 2

f(1)

输出结果如下:

'Get in decorator_a'
'Get in decorator_b'
'Get in inner_b'
'Get in inner_a'
'Get in f'

是不是很像django中的中间件的执行顺序,其实原理都差不多。

2.2 functiontools.wrap原理

引用其他博主的描述:

Python装饰器(decorator)在实现的时候,被装饰后的函数其实已经是另外一个函数了(函数名等函数属性会发生改变),为了不影响,Python的functools包中提供了一个叫wraps的decorator来消除这样的副作用。写一个decorator的时候,最好在实现之前加上functools的wrap,它能保留原有函数的名称和docstring。

补充:为了访问原函数此函数会设置一个__wrapped__属性指向原函数, 这样就可以解释上面1.3节中我们的写法了。

2.3 使用wrap装饰器前后的变化

未完待续。。。。。。。。。

3. 自制简易的my_cache

3.1 lru_cache提供的功能

lru_cache缓存装饰器提供的功能有:

  • 缓存被装饰对象的结果(基础功能)
  • 获取缓存信息
  • 清除缓存内容
  • 根据参数变化缓存不同的结果
  • LRU算法当缓存数量大于设置的maxsize时清除最不常使用的缓存结果

​ 从列出的功能可知,python自带的lru_cache缓存方法可以满足我们日常工作中大部分需求, 可是它不包含一个重要的特性就是,超时自动删除缓存结果,所以在我们自制的my_cache中我们将实现缓存的超时过期功能。

3.2 cache的核心部件

在作用域内存在一个相对全局的字典变量cache={}

在作用域内设置相对全局的变量包含命中次数 hits,未命中次数 misses ,最大缓存数量 maxsize和 当前缓存大小 currsize

第二点中的缓存信息中增加缓存加入时间和缓存有效时间

3.3 my_cache的实现

待实现。。。。。。。。。。。。

4. lru_cache缓存和redis缓存的区别

比较类型 lru_cache redis
缓存类型 缓存在app进程内存中 缓存在redis管理的内存中
分布式 只缓存在单个app进程中 可做分布式缓存
数据类型 hash 参数作为key,返回结果为value 有5种类型的数据结构
适用场景 比较小型的系统、单体应用 常用的缓存解决方案
功能 缓存功能但是缺少过期时间控制,但是使用上更加便捷 具备缓存需要的各种要素

5. 总结

综上所述,python自带的缓存功能使用于稍微小型的单体应用。优点是可以很方便的根据传入不同的参数缓存对应的结果, 并且可以有效控制缓存的结果数量,在超过设置数量时根据LRU算法淘汰命中次数最少的缓存结果。缺点是没有办法对缓存过期时间进行设置。

到此这篇关于python自带缓存lru_cache用法及扩展的使用的文章就介绍到这了,更多相关python自带缓存lru_cache内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python 的lru_cache装饰器使用简介

    Python 的 lru_cache 装饰器是一个为自定义函数提供缓存功能的装饰器.其内部会在下次以相同参数调用该自定义函数时直接返回计算好的结果.通过缓存计算结果可以很好地提升性能. 1 从示例说起 假设我们有一个计算斐波那契数列的求和函数,其内部采用递归方式实现. from xxx.clock_decorator import clock @clock def fibonacci(n): if n<2: return n return fibonacci(n-2)+fibonacci(n-1

  • Python实现的一个简单LRU cache

    起因:我的同事需要一个固定大小的cache,如果记录在cache中,直接从cache中读取,否则从数据库中读取.python的dict 是一个非常简单的cache,但是由于数据量很大,内存很可能增长的过大,因此需要限定记录数,并用LRU算法丢弃旧记录.key 是整型,value是10KB左右的python对象 分析: 1)可以想到,在对于cache,我们需要维护 key -> value 的关系 2)而为了实现LRU,我们又需要一个基于时间的优先级队列,来维护   timestamp  ->

  • Python中lru_cache的使用和实现详解

    在计算机软件领域,缓存(Cache)指的是将部分数据存储在内存中,以便下次能够更快地访问这些数据,这也是一个典型的用空间换时间的例子.一般用于缓存的内存空间是固定的,当有更多的数据需要缓存的时候,需要将已缓存的部分数据清除后再将新的缓存数据放进去.需要清除哪些数据,就涉及到了缓存置换的策略,LRU(Least Recently Used,最近最少使用)是很常见的一个,也是 Python 中提供的缓存置换策略. 下面我们通过一个简单的示例来看 Python 中的 lru_cache 是如何使用的.

  • python自带缓存lru_cache用法及扩展的使用

    目录 1. lru_cache的使用 1.1 参数详解 1.2 基本用法 1.3 进阶用法 2. functiontools.wrap装饰器对lru_cache的影响 2.1 多个装饰器装饰同一函数时的执行顺序 2.2 functiontools.wrap原理 2.3 使用wrap装饰器前后的变化 3. 自制简易的my_cache 3.1 lru_cache提供的功能 3.2 cache的核心部件 3.3 my_cache的实现 4. lru_cache缓存和redis缓存的区别 5. 总结 本

  • Python中缓存lru_cache的基本介绍和讲解

    目录 一.前言 二.举例说明 三.lru_cache 用法 1.参数详解 2. lru_cache不支持可变参数 四.lru_cache 与redis的区别 五.总结 一.前言 我们经常谈论的缓存一词,更多的类似于将硬盘中的数据存放到内存中以至于提高读取速度,比如常说的redis,就经常用来做数据的缓存.Python的缓存(lru_cache)是一种装饰在被执行的函数上,将其执行的结果缓存起来,当下次请求的时候,如果请求该函数的传参未变则直接返回缓存起来的结果而不再执行函数的一种缓存装饰器. 那

  • 利用Python自带PIL库扩展图片大小给图片加文字描述的方法示例

    前言 最近的一个项目中需要在图片上添加文字,使用了OpenCV,结果发现利用opencv给图像添加文字有局限.可利用的字体类型比较少,需要安装Freetype扩展,比较复杂.而且不能用putText函数输出中文,否则就会出现乱码的情况.只好选择使用Python PIL函数库对照片进行处理,利用Python自带的PIL库扩展图片大小给图片加上文字描述,大多都是库函数调用,只是给定图片宽度后计算文字所需行数的代码需要写. 代码比较丑,but it works. 代码示例 #!/usr/bin/env

  • springboot自带的缓存@EnableCaching用法

    目录 springboot自带的缓存@EnableCaching 1.@Cacheable添加缓存 2.@CacheEvict 清理缓存 使用springboot自带缓存步骤 1.在启动类XXXApplication 2.在service层需要使用缓存的方法 3.修改和删除数据时将缓存删除 springboot自带的缓存@EnableCaching 一般使用springboot自带缓存时,直接就在启动类里添加注解@EnableCaching . @EnableCaching她有两个经常使用的方法

  • Python使用LRU缓存策略进行缓存的方法步骤

    目录 一.Python 缓存 ① 缓存作用 ② 使用 Python 字典实现缓存 二.深入理解 LRU 算法 ① 查看 LRU 缓存的特点 ② 查看 LRU 缓存的结构 三.使用 lru_cache 装饰器 ① @lru_cache 装饰器的实现原理 ② 斐波拉契数列 ③ 使用 @lru_cache 缓存输出结果 ④ 限制 @lru_cache 装饰器大小 ⑤ 使用 @lru_cache 实现 LRU 缓存 ⑥ 解包 @lru_cache 的功能 四.添加缓存过期 五.@lru_cache 装饰

  • Python闭包和装饰器用法实例详解

    本文实例讲述了Python闭包和装饰器用法.分享给大家供大家参考,具体如下: Python的装饰器的英文名叫Decorator,作用是完成对一些模块的修饰.所谓修饰工作就是想给现有的模块加上一些小装饰(一些小功能,这些小功能可能好多模块都会用到),但又不让这个小装饰(小功能)侵入到原有的模块中的代码里去. 闭包 1.函数引用 #coding=utf-8 def test1(): print('This is test1!') #调用函数 test1() #引用函数 ret = test1 #打印

  • Python 中 -m 的典型用法、原理解析与发展演变

    在命令行中使用 Python 时,它可以接收大约 20 个选项(option),语法格式如下: python [-bBdEhiIOqsSuvVWx?] [-c command | -m module-name | script | - ] [args] 本文想要聊聊比较特殊的"-m"选项: 关于它的典型用法.原理解析与发展演变的过程. 首先,让我们用"--help"来看看它的解释: -m mod run library module as a script (ter

  • 深入了解Python装饰器的高级用法

    原文地址 https://www.codementor.io/python/tutorial/advanced-use-python-decorators-class-function 介绍 我写这篇文章的主要目的是介绍装饰器的高级用法.如果你对装饰器知之甚少,或者对本文讲到的知识点易混淆.我建议你复习下装饰器基础教程. 本教程的目标是介绍装饰器的一些有趣的用法.特别是怎样在类中使用装饰器,怎样给装饰器传递额外的参数. 装饰器 vs 装饰器模式 Decorator模式是一个面向对象的设计模式,它

  • Python Pillow(PIL)库的用法详解

    Pillow库是一个Python的第三方库. 在Python2中,PIL(Python Imaging Library)是一个非常好用的图像处理库,但PIL不支持Python3,所以有人(Alex Clark和Contributors)提供了Pillow,可以在Python3中使用. 官方文档路径:https://pillow.readthedocs.io/en/latest/ 一.安装Pillow pip install pillow Pillow库安装成功后,导包时要用PIL来导入,而不能用

  • Python中的@cache巧妙用法

    目录 Python中的@cache有什么妙用? @cache缓存功能介绍 @cache的应用场景 补充:Python @cache装饰器 Python中的@cache有什么妙用? 缓存是一种空间换时间的策略,缓存的设置可以提高计算机系统的性能.具体到代码中,缓存的作用就是提高代码的运行速度,但会占用额外的内存空间. 在Python的内置模块 functools 中,提供了高阶函数 cache() 用于实现缓存,用装饰器的方式使用: @cache. @cache缓存功能介绍 在cache的源码中,

随机推荐