python multiprocessing 多进程并行计算的操作

python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading,将任务分配到不同的CPU,避免了GIL(Global Interpreter Lock)的限制。

下面我们对multiprocessing中的Pool和Process类做介绍。

Pool

采用Pool进程池对任务并行处理更加方便,我们可以指定并行的CPU个数,然后 Pool 会自动把任务放到进程池中运行。 Pool 包含了多个并行函数。

apply apply_async

apply 要逐个执行任务,在python3中已经被弃用,而apply_async是apply的异步执行版本。并行计算一定要采用apply_async函数。

import multiprocessing
import time
from random import randint, seed
def f(num):
  seed()
  rand_num = randint(0,10) # 每次都随机生成一个停顿时间
  time.sleep(rand_num)
  return (num, rand_num)
start_time = time.time()
cores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes=cores)
pool_list = []
result_list = []
start_time = time.time()
for xx in xrange(10):
  pool_list.append(pool.apply_async(f, (xx, ))) # 这里不能 get, 会阻塞进程
result_list = [xx.get() for xx in pool_list]
#在这里不免有人要疑问,为什么不直接在 for 循环中直接 result.get()呢?这是因为pool.apply_async之后的语句都是阻塞执行的,调用 result.get() 会等待上一个任务执行完之后才会分配下一个任务。事实上,获取返回值的过程最好放在进程池回收之后进行,避免阻塞后面的语句。
# 最后我们使用一下语句回收进程池:
pool.close()
pool.join()
print result_list
print '并行花费时间 %.2f' % (time.time() - start_time)
print '串行花费时间 %.2f' % (sum([xx[1] for xx in result_list]))
#[(0, 8), (1, 2), (2, 4), (3, 9), (4, 0), (5, 1), (6, 8), (7, 3), (8, 4), (9, 6)]
#并行花费时间 14.11
#串行花费时间 45.00

map map_async

map_async 是 map的异步执行函数。

相比于 apply_async, map_async 只能接受一个参数。

import time
from multiprocessing import Pool
def run(fn):
 #fn: 函数参数是数据列表的一个元素
 time.sleep(1)
 return fn*fn
if __name__ == "__main__":
 testFL = [1,2,3,4,5,6]
 print '串行:' #顺序执行(也就是串行执行,单进程)
 s = time.time()
 for fn in testFL:
  run(fn)
 e1 = time.time()
 print "顺序执行时间:", int(e1 - s)
 print '并行:' #创建多个进程,并行执行
 pool = Pool(4) #创建拥有5个进程数量的进程池
 #testFL:要处理的数据列表,run:处理testFL列表中数据的函数
 rl =pool.map(run, testFL)
 pool.close()#关闭进程池,不再接受新的进程
 pool.join()#主进程阻塞等待子进程的退出
 e2 = time.time()
 print "并行执行时间:", int(e2-e1)
 print rl
# 串行:
# 顺序执行时间: 6
# 并行:
# 并行执行时间: 2
# [1, 4, 9, 16, 25, 36]

Process

采用Process必须注意的是,Process对象来创建进程,每一个进程占据一个CPU,所以要建立的进程必须 小于等于 CPU的个数。

如果启动进程数过多,特别是当遇到CPU密集型任务,会降低并行的效率。

#16.6.1.1. The Process class
from multiprocessing import Process, cpu_count
import os
import time
start_time = time.time()
def info(title):
#   print(title)
  if hasattr(os, 'getppid'): # only available on Unix
    print 'parent process:', os.getppid()
  print 'process id:', os.getpid()
  time.sleep(3)
def f(name):
  info('function f')
  print 'hello', name
if __name__ == '__main__':
#   info('main line')
  p_list = [] # 保存Process新建的进程
  cpu_num = cpu_count()
  for xx in xrange(cpu_num):
    p_list.append(Process(target=f, args=('xx_%s' % xx,)))
  for xx in p_list:
    xx.start()
  for xx in p_list:
    xx.join()
  print('spend time: %.2f' % (time.time() - start_time))
parent process: 11741
# parent process: 11741
# parent process: 11741
# process id: 12249
# process id: 12250
# parent process: 11741
# process id: 12251
# process id: 12252
# hello xx_1
# hello xx_0
# hello xx_2
# hello xx_3
# spend time: 3.04

进程间通信

Process和Pool均支持Queues 和 Pipes 两种类型的通信。

Queue 队列

队列遵循先进先出的原则,可以在各个进程间使用。

# 16.6.1.2. Exchanging objects between processes
# Queues
from multiprocessing import Process, Queue
def f(q):
  q.put([42, None, 'hello'])
if __name__ == '__main__':
  q = Queue()
  p = Process(target=f, args=(q,))
  p.start()
  print q.get()  # prints "[42, None, 'hello']"
  p.join()

pipe

from multiprocessing import Process, Pipe
def f(conn):
  conn.send([42, None, 'hello'])
  conn.close()
if __name__ == '__main__':
  parent_conn, child_conn = Pipe()
  p = Process(target=f, args=(child_conn,))
  p.start()
  print parent_conn.recv()  # prints "[42, None, 'hello']"
  p.join()

queue 与 pipe比较

Pipe() can only have two endpoints.

Queue() can have multiple producers and consumers.

When to use them

If you need more than two points to communicate, use a Queue().

If you need absolute performance, a Pipe() is much faster because Queue() is built on top of Pipe().

参考:

https://stackoverflow.com/questions/8463008/python-multiprocessing-pipe-vs-queue

共享资源

多进程应该避免共享资源。在多线程中,我们可以比较容易地共享资源,比如使用全局变量或者传递参数。

在多进程情况下,由于每个进程有自己独立的内存空间,以上方法并不合适。

此时我们可以通过共享内存和Manager的方法来共享资源。

但这样做提高了程序的复杂度,并因为同步的需要而降低了程序的效率。

共享内存

共享内存仅适用于 Process 类,不能用于进程池 Pool

# 16.6.1.4. Sharing state between processes
# Shared memory
from multiprocessing import Process, Value, Array
def f(n, a):
  n.value = 3.1415927
  for i in range(len(a)):
    a[i] = -a[i]
if __name__ == '__main__':
  num = Value('d', 0.0)
  arr = Array('i', range(10))
  p = Process(target=f, args=(num, arr))
  p.start()
  p.join()
  print num.value
  print arr[:]
# 3.1415927
# [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

Manager Class

Manager Class 既可以用于Process 也可以用于进程池 Pool。

from multiprocessing import Manager, Process
def f(d, l, ii):
  d[ii] = ii
  l.append(ii)
if __name__ == '__main__':
  manager = Manager()
  d = manager.dict()
  l = manager.list(range(10))
  p_list = []
  for xx in range(4):
    p_list.append(Process(target=f, args=(d, l, xx)))
  for xx in p_list:
    xx.start()
  for xx in p_list:
    xx.join()
  print d
  print l
# {0: 0, 1: 1, 2: 2, 3: 3}
# [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3]

补充:python程序多进程运行时间计算/多进程写数据/多进程读数据

import time
time_start=time.time()
time_end=time.time()
print('time cost',time_end-time_start,'s')

单位为秒,也可以换算成其他单位输出

注意写测试的时候,函数名要以test开头,否则运行不了。

多线程中的问题:

1)多线程存数据:

def test_save_features_to_db(self):
    df1 = pd.read_csv('/home/sc/PycharmProjects/risk-model/xg_test/statis_data/shixin_company.csv')
    com_list = df1['company_name'].values.tolist()
    # com_list = com_list[400015:400019]
    # print 'test_save_features_to_db'
    # print(com_list)
    p_list = [] # 进程列表
    i = 1
    p_size = len(com_list)
    for company_name in com_list:
      # 创建进程
      p = Process(target=self.__save_data_iter_method, args=[company_name])
      # p.daemon = True
      p_list.append(p)
      # 间歇执行进程
      if i % 20 == 0 or i == p_size: # 20页处理一次, 最后一页处理剩余
        for p in p_list:
          p.start()
        for p in p_list:
          p.join() # 等待进程结束
        p_list = [] # 清空进程列表
      i += 1

总结:多进程写入的时候,不需要lock,也不需要返回值。

核心p = Process(target=self.__save_data_iter_method, args=[company_name]),其中target指向多进程的一次完整的迭代,arg则是该迭代的输入。

注意写法args=[company_name]才对,原来写成:args=company_name,args=(company_name)会报如下错:只需要1个参数,而给出了34个参数。

多进程外层循环则是由输入决定的,有多少个输入就为多少次循环,理解p.start和p.join;

def __save_data_iter_method(self, com):
    # time_start = time.time()
    # print(com)
    f_d_t = ShiXinFeaturesDealSvc()
    res = f_d_t.get_time_features(company_name=com)
    # 是否失信
    shixin_label = res.shixin_label
    key1 = res.shixin_time
    if key1:
      public_at = res.shixin_time
      company_name = res.time_map_features[key1].company_name
      # print(company_name)
      established_years = res.time_map_features[key1].established_years
      industry_dx_rate = res.time_map_features[key1].industry_dx_rate
      regcap_change_cnt = res.time_map_features[key1].regcap_change_cnt
      share_change_cnt = res.time_map_features[key1].share_change_cnt
      industry_dx_cnt = res.time_map_features[key1].industry_dx_cnt
      address_change_cnt = res.time_map_features[key1].address_change_cnt
      fr_change_cnt = res.time_map_features[key1].fr_change_cnt
      judgedoc_cnt = res.time_map_features[key1].judgedoc_cnt
      bidding_cnt = res.time_map_features[key1].bidding_cnt
      trade_mark_cnt = res.time_map_features[key1].trade_mark_cnt
      network_share_cancel_cnt = res.time_map_features[key1].network_share_cancel_cnt
      cancel_cnt = res.time_map_features[key1].cancel_cnt
      industry_all_cnt = res.time_map_features[key1].industry_all_cnt
      network_share_zhixing_cnt = res.time_map_features[key1].network_share_zhixing_cnt
      network_share_judge_doc_cnt = res.time_map_features[key1].network_share_judge_doc_cnt
      net_judgedoc_defendant_cnt = res.time_map_features[key1].net_judgedoc_defendant_cnt
      judge_doc_cnt = res.time_map_features[key1].judge_doc_cnt
      f_d_do = ShixinFeaturesDto(company_name=company_name, established_years=established_years,
                    industry_dx_rate=industry_dx_rate, regcap_change_cnt=regcap_change_cnt,
                    share_change_cnt=share_change_cnt, industry_all_cnt=industry_all_cnt,
                    industry_dx_cnt=industry_dx_cnt, address_change_cnt=address_change_cnt,
                    fr_change_cnt=fr_change_cnt, judgedoc_cnt=judgedoc_cnt,
                    bidding_cnt=bidding_cnt, trade_mark_cnt=trade_mark_cnt,
                    network_share_cancel_cnt=network_share_cancel_cnt, cancel_cnt=cancel_cnt,
                    network_share_zhixing_cnt=network_share_zhixing_cnt,
                    network_share_judge_doc_cnt=network_share_judge_doc_cnt,
                    net_judgedoc_defendant_cnt=net_judgedoc_defendant_cnt,
                    judge_doc_cnt=judge_doc_cnt, public_at=public_at, shixin_label=shixin_label)
      # time_end = time.time()
      # print('totally cost', time_end - time_start)
      self.cfdbsvc.save_or_update_features(f_d_do)
def save_or_update_features(self, shixin_features_dto):
    """
    添加或更新:
    插入一行数据, 如果不存在则插入,存在则更新
    """
    self._pg_util = PgUtil()
    p_id = None
    if isinstance(shixin_features_dto, ShixinFeaturesDto):
      p_id = str(uuid.uuid1())
      self._pg_util.execute_sql(
        self.s_b.insert_or_update_row(
          self.model.COMPANY_NAME,
          {
            self.model.ID: p_id,
            # 公司名
            self.model.COMPANY_NAME: shixin_features_dto.company_name,
            # 失信时间
            self.model.PUBLIC_AT: shixin_features_dto.public_at,
            self.model.SHIXIN_LABEL : shixin_features_dto.shixin_label,
            self.model.ESTABLISHED_YEARS: shixin_features_dto.established_years,
            self.model.INDUSTRY_DX_RATE: shixin_features_dto.industry_dx_rate,
            self.model.REGCAP_CHANGE_CNT: shixin_features_dto.regcap_change_cnt,
            self.model.SHARE_CHANGE_CNT: shixin_features_dto.share_change_cnt,
            self.model.INDUSTRY_ALL_CNT: shixin_features_dto.industry_all_cnt,
            self.model.INDUSTRY_DX_CNT: shixin_features_dto.industry_dx_cnt,
            self.model.ADDRESS_CHANGE_CNT: shixin_features_dto.address_change_cnt,
            self.model.NETWORK_SHARE_CANCEL_CNT: shixin_features_dto.network_share_cancel_cnt,
            self.model.CANCEL_CNT: shixin_features_dto.cancel_cnt,
            self.model.NETWORK_SHARE_ZHIXING_CNT: shixin_features_dto.network_share_zhixing_cnt,
            self.model.FR_CHANGE_CNT: shixin_features_dto.fr_change_cnt,
            self.model.JUDGEDOC_CNT: shixin_features_dto.judgedoc_cnt,
            self.model.NETWORK_SHARE_JUDGE_DOC_CNT: shixin_features_dto.network_share_judge_doc_cnt,
            self.model.BIDDING_CNT: shixin_features_dto.bidding_cnt,
            self.model.TRADE_MARK_CNT: shixin_features_dto.trade_mark_cnt,
            self.model.JUDGE_DOC_CNT: shixin_features_dto.judge_doc_cnt
          },
          [self.model.ADDRESS_CHANGE_CNT,self.model.BIDDING_CNT,self.model.CANCEL_CNT,
           self.model.ESTABLISHED_YEARS,self.model.FR_CHANGE_CNT,self.model.INDUSTRY_ALL_CNT,
           self.model.INDUSTRY_DX_RATE,self.model.INDUSTRY_DX_CNT,self.model.JUDGE_DOC_CNT,
           self.model.JUDGEDOC_CNT,self.model.NETWORK_SHARE_CANCEL_CNT,self.model.NETWORK_SHARE_JUDGE_DOC_CNT,
           self.model.NETWORK_SHARE_ZHIXING_CNT,self.model.REGCAP_CHANGE_CNT,self.model.TRADE_MARK_CNT,
           self.model.SHARE_CHANGE_CNT,self.model.SHIXIN_LABEL,self.model.PUBLIC_AT]
        )
      )
    return p_id

函数中重新初始化了self._pg_util = PgUtil(),否则会报ssl error 和ssl decryption 的错误,背后原因有待研究!

**2)多进程取数据——(思考取数据为何要多进程)**
  def flush_process(self, lock): #需要传入lock;
    """
    运行待处理的方法队列
    :type lock Lock
    :return 返回一个dict
    """
    # process_pool = Pool(processes=20)
    # data_list = process_pool.map(one_process, self.__process_data_list)
    #
    # for (key, value) in data_list:
    #
    # 覆盖上期变量
    self.__dct_share = self.__manager.Value('tmp', {}) # 进程共享变量
    p_list = [] # 进程列表
    i = 1
    p_size = len(self.__process_data_list)
    for process_data in self.__process_data_list:  **#循环遍历需要同时查找的公司列表!!!self.__process_data_list包含多个process_data,每个process_data包含三种属性?类对象也可以循环????**
      # 创建进程
      p = Process(target=self.__one_process, args=(process_data, lock)) #参数需要lock
      # p.daemon = True
      p_list.append(p)
      # 间歇执行进程
      if i % 20 == 0 or i == p_size: # 20页处理一次, 最后一页处理剩余
        for p in p_list:
          p.start()
        for p in p_list:
          p.join() # 等待进程结束
        p_list = [] # 清空进程列表
      i += 1
    # end for
    self.__process_data_list = [] # 清空订阅
    return self.__dct_share.value
 def __one_process(self, process_data, lock):  #迭代函数
    """
    处理进程
    :param process_data: 方法和参数集等
    :param lock: 保护锁
    """
    fcn = process_data.fcn
    params = process_data.params
    data_key = process_data.data_key
    if isinstance(params, tuple):
      data = fcn(*params) #**注意:*params 与 params区别**
    else:
      data = fcn(params)
    with lock:
      temp_dct = dict(self.__dct_share.value)
      if data_key not in temp_dct:
        temp_dct[data_key] = []
      temp_dct[data_key].append(data)
      self.__dct_share.value = temp_dct

主程序调用:

def exe_process(self, company_name, open_from, time_nodes):
    """
    多进程执行pre订阅的数据
    :param company_name: 公司名
    :return:
    """
    mul_process_helper = MulProcessHelper()
    lock = Lock()
    self.__get_time_bidding_statistic(company_name, mul_process_helper)
    data = mul_process_helper.flush_process(lock)
    return data
 def __get_time_bidding_statistic(self, company_name, mul_process_helper):
    # 招投标信息
    process_data = ProcessData(f_e_t_svc.get_bidding_statistic_time_node_api, company_name,
                  self.__BIDDING_STATISTIC_TIME) **#此处怎么理解?ProcessData是一个类!!!**
    mul_process_helper.add_process_data_list(process_data)  #同时调用多个api???将api方法当做迭代????用于同时查找多个公司????
 def add_process_data_list(self, process_data):
    """
    添加用于进程处理的方法队列
    :type process_data ProcessData
    :param process_data:
    :return:
    """
    self.__process_data_list.append(process_data)
 class ProcessData(object):
  """
  用于进程处理的的数据
  """
  def __init__(self, fcn, params, data_key):
    self.fcn = fcn # 方法
    self.params = params # 参数
    self.data_key = data_key # 存储到进程共享变量中的名字

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • Python多进程multiprocessing.Pool类详解

    multiprocessing模块 multiprocessing包是Python中的多进程管理包.它与 threading.Thread类似,可以利用multiprocessing.Process对象来创建一个进程.该进程可以允许放在Python程序内部编写的函数中.该Process对象与Thread对象的用法相同,拥有is_alive().join([timeout]).run().start().terminate()等方法.属性有:authkey.daemon(要通过start()设置)

  • Python中使用多进程来实现并行处理的方法小结

    进程和线程是计算机软件领域里很重要的概念,进程和线程有区别,也有着密切的联系,先来辨析一下这两个概念: 1.定义 进程是具有一定独立功能的程序关于某个数据集合上的一次运行活动,进程是系统进行资源分配和调度的一个独立单位. 线程是进程的一个实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位.线程自己基本上不拥有系统资源,只拥有一点在运行中必不可少的资源(如程序计数器,一组寄存器和栈),但是它可与同属一个进程的其他的线程共享进程所拥有的全部资源. 2.关系 一个线程可以创建和撤

  • python 多进程并行编程 ProcessPoolExecutor的实现

    使用 ProcessPoolExecutor from concurrent.futures import ProcessPoolExecutor, as_completed import random 斐波那契数列 当 n 大于 30 时抛出异常 def fib(n): if n > 30: raise Exception('can not > 30, now %s' % n) if n <= 2: return 1 return fib(n-1) + fib(n-2) 准备数组 nu

  • Python多进程并发(multiprocessing)用法实例详解

    本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

  • python multiprocessing 多进程并行计算的操作

    python的multiprocessing包是标准库提供的多进程并行计算包,提供了和threading(多线程)相似的API函数,但是相比于threading,将任务分配到不同的CPU,避免了GIL(Global Interpreter Lock)的限制. 下面我们对multiprocessing中的Pool和Process类做介绍. Pool 采用Pool进程池对任务并行处理更加方便,我们可以指定并行的CPU个数,然后 Pool 会自动把任务放到进程池中运行. Pool 包含了多个并行函数.

  • Python multiprocessing多进程原理与应用示例

    本文实例讲述了Python multiprocessing多进程原理与应用.分享给大家供大家参考,具体如下: multiprocessing包是Python中的多进程管理包,可以利用multiprocessing.Process对象来创建进程,Process对象拥有is_alive().join([timeout]).run().start().terminate()等方法. multprocessing模块的核心就是使管理进程像管理线程一样方便,每个进程有自己独立的GIL,所以不存在进程间争抢

  • Python Multiprocessing多进程 使用tqdm显示进度条的实现

    1.背景 在python运行一些,计算复杂度比较高的函数时,服务器端单核CPU的情况比较耗时,因此需要多CPU使用多进程加快速度 2.函数要求 笔者使用的是:pathos.multiprocessing 库,进度条显示用tqdm库,安装方法: pip install pathos 安装完成后 from pathos.multiprocessing import ProcessingPool as Pool from tqdm import tqdm 这边使用pathos的原因是因为,multip

  • python multiprocessing多进程变量共享与加锁的实现

    python多进程和多线程是大家会重点了解的部分,因为很多工作如果并没有前后相互依赖关系的话其实顺序并不是非常的重要,采用顺序执行的话就必定会造成无谓的等待,任凭cpu和内存白白浪费,这是我们不想看到的. 为了解决这个问题,我们就可以采用多线程或者多进程的方式,(多线程我们之后再讲),而这两者之间是有本质区别的.就内存而言,已知进程是在执行过程中有独立的内存单元的,而多个线程是共享内存的,这是多进程和多线程的一大区别. 利用Value在不同进程中同步变量 在多进程中,由于进程之间内存相互是隔离的

  • python 包之 multiprocessing 多进程

    目录 一.创建一个进程 二.创建多个进程 三.管道pipe进行进程间通信 四.队列Queue进行进程间通信 五.进程间同步 六.进程间共享数据 七.进程池 一.创建一个进程 实例化 Process 类创建一个进程对象 然后调用它的 start 方法即可生成一个子进程 from multiprocessing import Process def func(s): print(s) if __name__ == '__main__': p = Process(target=func, args=(

  • Python实现多进程共享数据的方法分析

    本文实例讲述了Python实现多进程共享数据的方法.分享给大家供大家参考,具体如下: 示例一: # -*- coding:utf-8 -*- from multiprocessing import Process, Manager import time import random def kkk(a_list, number): for i in range(10): a_list.append(i) time.sleep(random.randrange(2)) print('这是进程{}

  • python使用多进程的实例详解

    python多线程适合IO密集型场景,而在CPU密集型场景,并不能充分利用多核CPU,而协程本质基于线程,同样不能充分发挥多核的优势. 针对计算密集型场景需要使用多进程,python的multiprocessing与threading模块非常相似,支持用进程池的方式批量创建子进程. •创建单个Process进程(使用func) 只需要实例化Process类,传递函数给target参数,这点和threading模块非常的类似,args为函数的参数 import os from multiproce

  • python实现多进程按序号批量修改文件名的方法示例

    本文实例讲述了python实现多进程按序号批量修改文件名的方法.分享给大家供大家参考,具体如下: 说明 文件名命名方式如图,是数字序号开头,但是中间有些文件删掉了,序号不连续,这里将序号连续起来,总的文件量有40w+,故使用多进程 代码 import os import re from multiprocessing import Pool def getAllFilePath(pathFolder,filter=[".jpg",".txt"]): #遍历文件夹下所

  • 详解Python实现多进程异步事件驱动引擎

    本文介绍了详解Python实现多进程异步事件驱动引擎,分享给大家,具体如下: 多进程异步事件驱动逻辑 逻辑 code # -*- coding: utf-8 -*- ''' author: Jimmy contact: 234390130@qq.com file: eventEngine.py time: 2017/8/25 上午10:06 description: 多进程异步事件驱动引擎 ''' __author__ = 'Jimmy' from multiprocessing import

  • 基于python的多进程共享变量正确打开方式

    多进程共享变量和获得结果 由于工程需求,要使用多线程来跑一个程序.但是因为听说python的多线程是假的,于是使用多进程,反正任务需要共享的参数少. 查阅资料,发现实现多进程主要使用Multiprocessing,有两种方式,一种是Process,另一种是Pool. p = Process(target=fun,args=(args)) 再通过p.start()来启动一个子进程,通过p.join()方法来使得子进程运行结束后再执行父进程. 但是这样很烦,还要写个for 循环来开n个线程和join

随机推荐