C语言数据结构通关时间复杂度和空间复杂度

目录
  • 1.时间复杂度:
    • 1.常数阶
    • 2.线性阶
    • 3.对数阶
    • 4.平方阶
  • 2.算法空间复杂度

算法的时间复杂度和空间复杂度

1.时间复杂度:

首先,为什么会有这个概念的出现呢?

原来啊,在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级。算法的时间复杂度,也就是算法的时间量度,记作T(n) = O(f(n))。它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度,其中f(n)是问题规模n的某个函数。

这样用大写O()来体现算法时间复杂度的记法,称为大O记法。

你可以简单这样认为:算法时间复杂度实际上就是基本操作的执行次数。

到这里,我们先来谈谈如何推导大O阶方法

(1)用常数1取代运行时间中的所有加法常数

(2)在修改后的运行次数函数中,只保留最高阶项

(3)如果最高阶项存在且其系数不是1,则去除与这个项相乘的系数。

得到的结果就是大O阶

这仿佛就像是游戏攻略一样,我们得到了一个推导算法时间复杂度的万能公式。可是实际上,分析一个算法的时间复杂度,没有这么的简单。

按照算法时间复杂的定义,我们取了非官方的名称,常数阶O(1),对数阶O(log2n),线性阶O(n), 线性对数阶O(nlog2n),平方阶O(n2),立方阶O(n3),..., k次方阶O(nk),指数阶O(2n)。随着问题规模n的不断增大,上述时间复杂度不断增大,算法的执行效率越低。下面我们对其分析分析。

1.常数阶

我们随便给几行代码

int sum = 0,n = 100;
sum = (1+n)*n/2;
printf("%d",sum);

大声回答这个算法时间复杂度是O(3)还是O(1),答案肯定是O(1)啊,首先这个算法执行次数函数是f(n) = 3;根据我们推导大O阶的方法,把3改为1,这是常数项,没有其他项可,所以是O(1)。实际上无论n是多少,这种与问题的大小无关,执行时间恒定的算法,我们称为具有O(1)的时间复杂度,又叫常数阶。

注意:不管这个常数是多少,我们都记作O(1),而不是O(3),O(5)等其他数字,这是初学者常犯的错误。

2.线性阶

线性阶的循环结构会复杂很多。要确定某个算法的阶次,我们需要确定某个特定语句运行的次数。

下面这段代码,它的循环的时间复杂度为O(n),因为循环体中的代码需要执行n次

int i;
for(i=0;i<n;i++)
{
/*时间复杂度为O(1)的程序步骤序列*/
}

3.对数阶

下面这段代码,时间复杂度又是多少呢?

int count = 1;
while(count<n)
{
count = count *2;
}

由于每次count乘以2以后,就距离n更近了一分,也就是说,有多少个2相乘后大于n,则会退循环。有2的x次方=n,x = log2n。所以这个循环的时间复杂度为O(longn)

4.平方阶

下面例子是一个循环嵌套,它的内循环刚才我们已经分析过。时间复杂度为O(n)

int i,j;
for(i=0;i<n;i++)
{
  for(j=0;j<n;j++)
  {
    /*时间复杂度为O(1)的程序步骤序列*/
  }
}

而对于外层的循环,不过是内部这个时间复杂度为O(n)的语句,在循环n次。所以时间复杂度为O(n*n);如果外层循环次数改为了m,那时间复杂度就为O(m*n)

所以我们可以总结得出,循环的时间复杂度等于循环体的复杂度乘以该循环运行的次数。那么下面这个循环嵌套,它的时间复杂度是多少呢?

int i,j;
for(i=0;i<n;i++)
{
for(j=i;j<n;j++)/*注意j=i而不是o*/
{
/*时间复杂度为O(1)的程序步骤序列*/
}
}

由于当i=0是,内循环执行了n次,当i=1时,执行了n-1次,.......当i=n-1是,执行了1次。所以总的执行次数为n+(n-1)+(n-2)+....+1 = n(n+1)/2 = n*n/2+n/2;根据大O阶推导的方法。最终这段代码的时间复杂度为O(n*n)。

从这个例子我们可以知道,理解大O阶推导不算难,难的是对数列的一些相关运算,这更多的是考察你的数学知识和能力,我们继续看例子。

对于方法调用的时间复杂度又如何分析。

int i,j;
for(i = 0;i<n;i++)
{
function(i);
}

上面这段代码调用一个函数function()

void function(int count)
{
print(count);
}

函数体是打印count这个参数。这很好理解。function()函数的时间复杂度是O(1)。所以整体的时间复杂度为O(n)

常用的时间复杂度所耗费的时间从小到大依次是:

Ο(1)<Ο(log2n)<Ο(n)<Ο(nlog2n)<Ο(n2)<Ο(n3)<…<Ο(2n)<Ο(n!)

实际上,对于算法的分析,一种方法时候计算所有情况的平均值,这中时间复杂度的计算方法称为平均时间复杂度。另一种方法是计算最坏情况下的时间复杂度,这种方法称为最坏时间复杂度。一般在没有特殊说明的情况下,都是指最坏时间复杂度。

2.算法空间复杂度

类似于时间复杂度的讨论,一个算法的空间复杂度(Space Complexity)S(n)定义为该算法所耗费的存储空间,它也是问题规模n的函数。渐近空间复杂度也常常简称为空间复杂度。

空间复杂度(Space Complexity)是对一个算法在运行过程中临时占用存储空间大小的量度。一个算法在计算机存储器上所占用的存储空间,包括存储算法本身所占用的存储空间,算法的输入输出数据所占用的存储空间和算法在运行过程中临时占用的存储空间这三个方面。算法的输入输出数据所占用的存储空间是由要解决的问题决定的,是通过参数表由调用函数传递而来的,它不随本算法的不同而改变。存储算法本身所占用的存储空间与算法书写的长短成正比,要压缩这方面的存储空间,就必须编写出较短的算法。算法在运行过程中临时占用的存储空间随算法的不同而异,有的算法只需要占用少量的临时工作单元,而且不随问题规模的大小而改变,我们称这种算法是“就地\"进行的,是节省存储的算法,如这一节介绍过的几个算法都是如此;有的算法需要占用的临时工作单元数与解决问题的规模n有关,它随着n的增大而增大,当n较大时,将占用较多的存储单元。

看了这个标准官方的定义后,是不是有一点点小小的理解。

我们在写代码时,完全可以用空间来换取时间,比如判断某某年是不是闰年这个问题的解决。就可以存储空间来换取计算时间的小技巧。通常我们都使用“时间复杂度”来指运行时间的需求,使用“空间复杂度”指空间需求。当不用限定词地使用“复杂度”时,通常都是指空间复杂度。

言外之意,我们这里不重点讲解时间复杂度了。

通过以上的介绍,想必对时间复杂度与空间复杂度都了了自己的认识了把,本次的博客也到此结束。

到此这篇关于C语言数据结构通关时间复杂度和空间复杂度的文章就介绍到这了,更多相关C语言时间与空间复杂度内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • C语言 详细解析时间复杂度与空间复杂度

    目录 一.概念 1.1.算法效率 1.2.时间复杂度 1.3.空间复杂度 二.计算 2.1.大O的渐进表示法 2.2.时间复杂度计算 2.3.空间复杂度计算 三.有复杂度要求的习题 一.概念 1.1.算法效率 如何衡量一个算法的好坏?比如对于以下斐波那契数列: long long Fib(int N) { if (N < 3) return 1; return Fib(N - 1) + Fib(N - 2); } 斐波那契数列用递归实现方式非常简洁,但简洁一定好吗?那该如何衡量其好与坏呢?在学完

  • C语言数据结构时间复杂度及空间复杂度简要分析

    目录 一.时间复杂度和空间复杂度是什么? 1.1算法效率定义 1.2时间复杂度概念 1.3空间复杂度概念 二.如何计算常见算法的时间复杂度和空间复杂度 2.1时间复杂度计算 2.2空间复杂度计算 2.3快速推倒大O渐进表达法 三.一些特殊的情况 总结 一.时间复杂度和空间复杂度是什么? 1.1算法效率定义 算法效率分为两种,一种是时间效率--时间复杂度,另一种是空间效率--空间复杂度 1.2时间复杂度概念 时间复杂度,简言之就是你写一个代码,它解决一个问题上需要走多少步骤,需要花费多长时间.打个

  • C语言三分钟精通时间复杂度与空间复杂度

    目录 一.时间复杂度 1)O(n)的含义 2)复杂表达式的简化 3)O(n)不一定优于O(n^2) ​4)递归的时间复杂度 二.空间复杂度 1)O(1)空间复杂度​ 2)​​​​​​​O(n)空间复杂度​ 3)​​​​​​​O(mn)空间 复杂度​ 4)递归算法空间算法复杂度分析​ 一.时间复杂度 1)O(n)的含义 程序消耗的时间用算法的操作单元数来表示 假设数据的规模为n,则用f(n)表示操作单元数的大小,而f(n)常被简化 O表示的是一般的情况,而不是上界或下界.并且它是在数据量级非常大的

  • C语言 超详细讲解算法的时间复杂度和空间复杂度

    目录 1.前言 1.1 什么是数据结构? 1.2 什么是算法? 2.算法效率 2.1 如何衡量一个算法的好坏 2.2 算法的复杂度 2.3 复杂度在校招中的考察 3.时间复杂度 3.1 时间复杂度的概念 3.2 大O的渐进表示法 3.3 常见时间复杂度计算举例 4.空间复杂度 5. 常见复杂度对比 1.前言 1.1 什么是数据结构? 数据结构(Data Structure)是计算机存储.组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合. 1.2 什么是算法? 算法(Algorit

  • C语言数据结构通关时间复杂度和空间复杂度

    目录 1.时间复杂度: 1.常数阶 2.线性阶 3.对数阶 4.平方阶 2.算法空间复杂度 算法的时间复杂度和空间复杂度 1.时间复杂度: 首先,为什么会有这个概念的出现呢? 原来啊,在进行算法分析时,语句总的执行次数T(n)是关于问题规模n的函数,进而分析T(n)随n的变化情况并确定T(n)的数量级.算法的时间复杂度,也就是算法的时间量度,记作T(n) = O(f(n)).它表示随问题规模n的增大,算法执行时间的增长率和f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度,其中f(

  • Java数据结构通关时间复杂度和空间复杂度

    目录 算法效率 时间复杂度 空间复杂度 小结 算法效率 算法效率分析分为两种:第一种是时间效率,第二种是空间效率.时间效率被称为时间复杂度,而空间效率被 称作空间复杂度. 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额 外空间,在计算机发展的早期,计算机的存储容量很小.所以对空间复杂度很是在乎(以前是以时间换空间).但是经过计算机行业的 迅速发展,计算机的存储容量已经达到了很高的程度.所以我们如今已经不需要再特别关注一个算法的空间复 杂度(现在是以空间换时间).

  • C语言数据结构与算法时间空间复杂度基础实践

    目录 小感想 时间复杂度 空间复杂度 小感想 今天去看了看许多人今年去各个大厂面试的面经,确实如大体所说,各大公司越来越注重性能迭代,时代需要数据结构与算法这样的考试. 一个公司的成本主要来自于人力成本,但是上了规模写核心代码的人少了,成本就会来自于机器,资源,时间,抢占到这些就相当于无时无刻在减少客户流失.所以同样一段代码给两个人写,甲拿 8000,乙拿 25000,但是后者效率提高了50%,而这50%带来的收益远远超过了(25000-8000),这就是为什么许多大厂要给出如此吸引人的高薪资来

  • Java 数据结构之时间复杂度与空间复杂度详解

    目录 算法效率 时间复杂度 什么是时间复杂度 推导大 O 阶的方法 算法情况 计算冒泡排序的时间复杂度 计算二分查找的时间复杂度 计算阶乘递归的时间复杂度 计算斐波那契递归的时间复杂度 空间复杂度 计算冒泡排序的空间复杂度 计算斐波那契数列的空间复杂度(非递归) 计算阶乘递归Factorial的时间复杂度 算法效率 在使用当中,算法效率分为两种,一是时间效率(时间复杂度),二是空间效率(空间复杂度).时间复杂度是指程序运行的速度.空间复杂度是指一个算法所需要的额外的空间. 时间复杂度 什么是时间

  • C语言算法的时间复杂度和空间复杂度

    目录 1.算法效率 1.1 如何衡量一个算法的好坏 1.2算法的复杂度 2.时间复杂度 2.1 时间复杂度的概念 2.2 大O的渐进表示法 2.3常见时间复杂度计算举例 3.空间复杂度 4.常见复杂度对比 5.复杂度的OJ练习 5.1消失的数字OJ 3.2 旋转数组OJ 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法的好坏呢?比如对于以下斐波那契数列: long long Fib(int N) { if (N < 3) return 1; return Fib(N - 1) +

  • C语言数据结构与算法之时间空间复杂度入门

    目录 数据结构与算法 什么是数据结构?什么是算法? 分析维度 大O的渐进表示法 常数阶 线性阶 对数阶 其他时间复杂度指标 空间复杂度 数据结构与算法 终于开始搞这块难啃的骨头了,走上这条漫漫长路之前要明白: 什么是数据结构?什么是算法? 是数据之间存在一种或多种特定关系的数据元素集合,为编写出一个“好”的程序,必须分析待处理对象的特性及各处理对象之间存在的关系,这也就是研究数据结构的意义所在为编写出一个“好”的程序,必须分析待处理对象的特性及各处理对象之间存在的关系这也就是研究数据结构的意义所

  • C语言数据结构之算法的时间复杂度

    目录 1.算法的复杂度 2.时间复杂度 2.1 时间复杂度的定义 2.2 大O的渐进表示法 3.常见时间复杂度计算举例 3.1 冒泡排序的时间复杂度 3.2 二分查找的时间复杂度 3.3 阶乘(递归)的时间复杂度 3.4菲波那切数列的时间复杂度 1.算法的复杂度 算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源 .因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度. 时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的

随机推荐