python中读入二维csv格式的表格方法详解(以元组/列表形式表示)

如何去读取一个没有表头的二维csv文件(如下图所示)?

并以元组的形式表现数据:

((1.0, 0.0, 3.0, 180.0), (2.0, 0.0, 2.0, 180.0), (3.0, 0.0, 1.0, 180.0), (4.0, 0.0, 0.0, 180.0), (5.0, 0.0, 3.0, 178.0))

方法一,使用python内建的数据处理库:

#python自带的库
rows = open('allnodes.csv','r',encoding='utf-8').readlines()
lines = [x.rstrip() for x in rows]#去掉每行数据的/n转义字符
lines[0] = '1,0,3,180'#手动去掉第一行的csv开始符号
data = []#使用列表读取是因为列表长度是可变的,而元组不可。
[data.append(eval(i)) for i in lines]#将每一行数据以子列表的形式加入到data中
allnodes = tuple(data)#将列表类型转化为元组,若想用二维列表的形式读取即删掉此行语句
print(allnodes)

out:((1, 0, 3, 180), (2, 0, 2, 180), (3, 0, 1, 180), (4, 0, 0, 180), (5, 0, 3, 178), (6, 0, 2, 178), (7, 0, 1, 178), (8, 0, 0, 178),...,(29484, -40, 0, 0))

方法二,使用pandas库:

import pandas as pd
df = pd.read_csv('allnodes.csv',header = None)#因为没有表头,不把第一行作为每一列的索引
data = []
for i in df.index:
  data.append(tuple(df.values[i]))
allnodes = tuple(data)#若想用二维列表的形式读取即删掉此行语句
print(allnodes)
out:
((1.0, 0.0, 3.0, 180.0), (2.0, 0.0, 2.0, 180.0), (3.0, 0.0, 1.0, 180.0), (4.0, 0.0, 0.0, 180.0), (5.0, 0.0, 3.0, 178.0), (6.0, 0.0, 2.0, 178.0), (7.0, 0.0, 1.0, 178.0), (8.0, 0.0, 0.0, 178.0),..., (29484.0, -40.0, 0.0, 0.0))

小结:用python自带的库进行读取的时候可能稍快,但对于大型的多维数据处理,使用pandas可进行更方面,灵活,可视化的操作。

到此这篇关于python中读入二维csv格式的表格方法详解(以元组/列表形式表示)的文章就介绍到这了,更多相关python读入二维csv文件内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python把对应格式的csv文件转换成字典类型存储脚本的方法

    该脚本是为了结合之前的编写的脚本,来实现数据的比对模块,实现数据的自动化!由于数据格式是定死的,该代码只做参考,有什么问题可以私信我! CSV的数据格式截图如下: readDataToDic.py源代码如下: #coding=utf8 import csv ''' 该模块的主要功能,是根据已有的csv文件, 通过readDataToDicl函数,把csv中对应的部分, 写入字典中,每个字典当当作一条json数据 ''' class GenExceptData(object): def __ini

  • Python读取csv文件分隔符设置方法

    Windows下的分隔符默认的是逗号,而MAC的分隔符是分号.拿到一份用分号分割的CSV文件,在Win下是无法正确读取的,因为CSV模块默认调用的是Excel的规则. 所以我们在读取文件的时候需要添加分割符变量. import csv import os cwd = os.getcwd() print ("Current folder is %s" % (cwd) ) csvfile = open( cwd + '\data\eclipse\change-metrics.csv','r

  • Python将列表数据写入文件(txt, csv,excel)

    写入txt文件 def text_save(filename, data):#filename为写入CSV文件的路径,data为要写入数据列表. file = open(filename,'a') for i in range(len(data)): s = str(data[i]).replace('[','').replace(']','')#去除[],这两行按数据不同,可以选择 s = s.replace("'",'').replace(',','') +'\n' #去除单引号,

  • python读写csv文件方法详细总结

    python提供了大量的库,可以非常方便的进行各种操作,现在把python中实现读写csv文件的方法使用程序的方式呈现出来. 在编写python程序的时候需要csv模块或者pandas模块,其中csv模块使不需要重新下载安装的,pandas模块需要按照对应的 python版本安装. 在python2环境下安装pandas的方式是: sudo pip install pandas 在python3环境下安装pandas的方式是: sudo pip3 install pandas 1.使用csv读写

  • python读csv文件时指定行为表头或无表头的方法

    pd.read_csv()方法中header参数,默认为0,标签为0(即第1行)的行为表头.若设置为-1,则无表头.示例如下: (1)不设置header参数(默认)时: df1 = pd.read_csv('target.csv',encoding='utf-8') df1 (2)header=1时: import pandas as pd df2 = pd.read_csv('target.csv',encoding='utf-8',header=1) df2 (3)header=-1时(可用

  • python中读入二维csv格式的表格方法详解(以元组/列表形式表示)

    如何去读取一个没有表头的二维csv文件(如下图所示)? 并以元组的形式表现数据: ((1.0, 0.0, 3.0, 180.0), (2.0, 0.0, 2.0, 180.0), (3.0, 0.0, 1.0, 180.0), (4.0, 0.0, 0.0, 180.0), (5.0, 0.0, 3.0, 178.0)) 方法一,使用python内建的数据处理库: #python自带的库 rows = open('allnodes.csv','r',encoding='utf-8').readl

  • 探讨php中遍历二维数组的几种方法详解

    在PHP应用当中,二维数组的应用算是高频率的了,尤其遇到较为复杂的计算时,基本上都要用到二维或者多维数组的,而在编历多维数组使用的较多的应该是 for 循环遍历和 foreach 遍历两个函数了,其中没什么特殊要求的话,基本上都是在使用 foreach 遍历函数,当然,我们可以通过这两个遍历函数来组合成各种各样的输出方式. 还是老样子,一直在使用,从来未记住,简单的遍历输出还是较为简单的,下面是两个在PHP中遍历二维函数的代码片段,如下.. 使用for循环遍历 <?PHP //使用for循环遍历

  • Python识别二维码的两种方法详解

    目录 前言 pyzbar + PIL cv2 前言 最近在搜寻资料时,发现了一则10年前的新闻:二维码将成线上线下关键入口.从今天的移动互联网来看,支付收款码/健康码等等与我们息息相关,二维码确实成为了我们生活中不可或缺的一部分. 在学习Python处理二维码的过程中,我们看到的大多是“用python生成酷炫二维码”.“用Python制作动图二维码”之类的文章.而关于使用Python批量识别二维码的教程,并不多见.所以今天我会给大家分享两种批量识别二维码的Python技巧! pyzbar + P

  • 对Python中一维向量和一维向量转置相乘的方法详解

    在Python中有时会碰到需要一个一维列向量(n*1)与另一个一维列向量(n*1)的转置(1*n)相乘,得到一个n*n的矩阵的情况.但是在python中, 我们发现,无论是".T"还是"np.transpose"都无法实现一维向量的转置,相比之下,Matlab一句" a' "就能实现了. 那怎么实现呢?我找了个方法.请看: 即,我们把向量reshape一下,如此便实现了一维向量与一维向量转置相乘为矩阵的目的. 若大家有其他方法望告知. 以上这篇对

  • Python中的二维数组实例(list与numpy.array)

    关于python中的二维数组,主要有list和numpy.array两种. 好吧,其实还有matrices,但它必须是2维的,而numpy arrays (ndarrays) 可以是多维的. 我们主要讨论list和numpy.array的区别: 我们可以通过以下的代码看出二者的区别 >>import numpy as np >>a=[[1,2,3],[4,5,6],[7,8,9]] >>a [[1,2,3],[4,5,6],[7,8,9]] >>type(a

  • python中的二维列表实例详解

    1. 使用输入值初始化列表 nums = [] rows = eval(input("请输入行数:")) columns = eval(input("请输入列数:")) for row in range(rows): nums.append([]) for column in range(columns): num = eval(input("请输入数字:")) nums[row].append(num) print(nums) 输出结果为: 请

  • Python中创建二维数组

    二维数组 二维数组本质上是以数组作为数组元素的数组,即"数组的数组",类型说明符 数组名[常量表达式][常量表达式].二维数组又称为矩阵,行列数相等的矩阵称为方阵.对称矩阵a[i][j] = a[j][i],对角矩阵:n阶方阵主对角线外都是零元素. Python中创建二维数组 Python中的列表list可以当做一维数组使用,但是没有直接的定义使用二维数组.如果直接使用a = [][]会产生SyntaxError: invalid syntax语法不正确错误. 一般Python中创建二

  • python中对二维列表中一维列表的调用方法

    python调用二维列表中的一维列表的方法: 访问二维列表中的一维列表可以用下标法"列表名(数字)"的方式获取到一维列表所有元素 x = [[23, 25, 15, 69, 48], [53, 98, 87, 478, 365], [231, 55, 653, 589, 545, 123]] print(x[0]) 执行结果: 内容扩展: 二维列表转一维列表 from compiler.ast import flatten a=[[1,2],[5,6]] print(flatten(a

  • 对python实现二维函数高次拟合的示例详解

    在参加"数据挖掘"比赛中遇到了关于函数高次拟合的问题,然后就整理了一下源码,以便后期的学习与改进. 在本次"数据挖掘"比赛中感觉收获最大的还是对于神经网络的认识,在接近一周的时间里,研究了进40种神经网络模型,虽然在持续一周的挖掘比赛把自己折磨的惨不忍睹,但是收获颇丰.现在想想也挺欣慰自己在这段时间里接受新知识的能力.关于神经网络方面的理解会在后续博文中补充(刚提交完论文,还没来得及整理),先分享一下高次拟合方面的知识. # coding=utf-8 import

  • 基于python 二维数组及画图的实例详解

    1.二维数组取值 注:不管是二维数组,还是一维数组,数组里的数据类型要一模一样,即若是数值型,全为数值型 #二维数组 import numpy as np list1=[[1.73,1.68,1.71,1.89,1.78], [54.4,59.2,63.6,88.4,68.7]] list3=[1.73,1.68,1.71,1.89,1.78] list4=[54.4,59.2,63.6,88.4,68.7] list5=np.array([1.73,1.68,1.71,1.89,1.78])

随机推荐