关于后缀表达式的java实现过程

目录
  • 中缀表示法java实现
    • 后缀表示法
    • 逆波兰表达式的计算方式
    • 与中缀记法的转换
  • java后缀表达式的计算
    • 实现方法
    • 示例
    • 代码实现

中缀表示法java实现

观察一个普通的算式:3+4*5

我们当然知道,应该先计算 4*5 再将这个结果和3相加,就能得到最后的结果。

如果是一个复杂一些的算式:3+4*((5-6)/7+8)

这依然难不倒我们,只要牢记()的优先级最高,然后是*/,最后是+-就没问题了,这就是通常的中缀表示法。

但是通过算法分析,这样的表达式,由于每一次都需要判断优先级,所以运行的时间应当是O(N^2)。

在表达式很长很复杂的时候,就需要一种更适合计算机的算法来计算了。

后缀表示法

简介

逆波兰表示法(Reverse Polish notation,RPN,或逆波兰记法),是一种是由波兰数学家扬·武卡谢维奇1920年引入的数学表达式方式,在逆波兰记法中,所有操作符置于操作数的后面,因此也被称为后缀表示法。

逆波兰记法不需要括号来标识操作符的优先级。逆波兰记法中,操作符置于操作数的后面。

例如表达“三加四”时,写作“3 4 +”,而不是“3 +4”。如果有多个操作符,操作符置于第二个操作数的后面,所以常规中缀记法的“3 - 4 + 5”在逆波兰记法中写作“3 4 - 5+”:先3减去4,再加上5。——维基百科逆波兰表示法词条。

这种表示法有以下特点:

  • 不需要使用括号。和中缀表达式不同,逆波兰表达式不需要遍历整个算式来寻找一对括号。
  • 逆波兰表达式的实现一般基于堆栈。在计算机中,堆栈这种数据结构具有极快的效率。运行时间是O(N)。
  • 不满足交换律。

逆波兰表达式的计算方式

例如2*3+4*5

你可以这么计算,2 和 3 相乘的和是 5,把这个数存起来,再计算 4*5 的值,存起来, 最后在计算两个存在一起的值。写出来是这样子的 2 3 * 4 5 * + 。这就是后缀或逆波兰记法。

采用堆栈实现的过程很简单,规则如下。

从头开始读取。读取到如果是数字,则将其压入栈中。如果是一个符号,就取两次栈顶的元素通过该符号进行计算,再把得到的数压入栈中。

Java实现

public class PRNCalculator {    
       public static double PRNCal(String PRN){
              Stack<Double> stack = new Stack<Double>();
              String[] ss = PRN.split(" ");
              for(int i = 0; i < ss.length; i++){
                     if(ss[i].matches("\\d")) stack.push(Double.valueOf(ss[i]));
                     if(ss[i].matches("[+|-|*|/]")){
                           double b = stack.pop();
                           double a = stack.pop();
                           if(ss[i].equals("+")) stack.push(a + b);
                           if(ss[i].equals("-")) stack.push(a - b);
                           if(ss[i].equals("*")) stack.push(a * b);
                           if(ss[i].equals("/")) stack.push(a / b);
                     }
              }
              return stack.pop();
       }
}

Test类

public class PRNTest {
       public static void main(String[] args) {
              String s = "2 3 * 4 5 * + ";
              double result = PRNCalculator.PRNCal(s);
              System.out.println("输入的逆波兰表达式:" + s);
              System.out.println("计算结果:" + result);
       }
}

打印结果:

输入的逆波兰表达式:2 3 * 4 5 * +
计算结果:26.0

与中缀记法的转换

和后缀表达式的计算方法类似,一个中缀记法转换到后缀记法,也可以利用堆栈来实现。

从头开始读取。如果读取到的是数字,将其输出。如果读取到的是符号,则判断该符号的优先级是否高于栈顶或栈为空,是,则压入栈中;否,则将栈顶输出并继续判断。如果读取到的是括号,”(“会直接被压入栈;在读取到”)”的时候,栈会一直弹出直到遇到”(“。下面是这个转换的Java实现。

package PRNCalculator;
import java.util.Stack;
public class PRNCalculator {
       public static String PRNTansf(String s){
              Stack<String> stack = new Stack<String>();
              String[] ss = s.split(" ");
              StringBuffer sb = new StringBuffer();
              for(int i = 0; i < ss.length; i++){
                     if(ss[i].matches("\\d")) sb.append(ss[i] + " ");
                     if(ss[i].matches("[+|-|*|/|(|)]")) {
                           if(stack.isEmpty()) {
                                  stack.push(ss[i]);
                           } else {
                                  if(ss[i].matches("[+|-]")) {
                                         while(!stack.isEmpty() && !stack.peek().matches("[(]")) sb.append(stack.pop()).append(" ");
                                         if(stack.isEmpty() || stack.peek().matches("[(]")) stack.push(ss[i]);
                                  }
                                  if(ss[i].matches("[*|/]")){
                                         while(stack.peek().matches("[*|/]") && !stack.peek().matches("[(]")) sb.append(stack.pop()).append(" ");
                                         if(stack.isEmpty() || stack.peek().matches("[(]") || stack.peek().matches("[+|-]")) stack.push(ss[i]);
                                  }
                                  if(ss[i].matches("[(]")) {
                                         stack.push(ss[i]);
                                  }
                                  if(ss[i].matches("[)]")){
                                         while(!stack.peek().matches("[(]")) sb.append(stack.pop()).append(" ");
                                         if(stack.peek().matches("[(]")) stack.pop();
                                  }
                           }
                     }
              }
              while(!stack.isEmpty()) sb.append(stack.pop()).append(" ");
              return sb.toString();
       }
}
* Test类*

package PRNCalculator;
public class PRNTest {
       public static void main(String[] args) {
              String s = "4 + 5 + 8 * ( 6 + 8 * 7 ) / 3 + 4";
              String PRN = PRNCalculator.PRNTansf(s);
              System.out.println("输入的表达式为:");
              System.out.println(s);
              System.out.println("输出的逆波兰表达式为:");
              System.out.println(PRN);
              double result = PRNCalculator.PRNCal(PRN);
              System.out.println("该表达式计算结果为:");
              System.out.println(result);
       }
}

打印结果:

输入的表达式为:
4 + 5 + 8 * ( 6 + 8 * 7 ) / 3 + 4
输出的逆波兰表达式为:
4 5 + 8 6 8 7 * + * 3 / + 4 +
该表达式计算结果为:
178.33333333333334

java后缀表达式的计算

实现方法

从左至右扫描表达式

遇到数字时,将数字压栈,遇到运算符时,弹出栈顶的两个数,计算并将结果入栈

重复2直到表达式最右端,最后运算得出的值即为表达式的结果

示例

计算后缀表达式的值:1 2 3 + 4 × + 5 -

从左至右扫描,将1,2,3压入栈;

遇到+运算符,3和2弹出,计算2+3的值,得到5,将5压入栈;

遇到4,将4压入栈

遇到×运算符,弹出4和5,计算5×4的值,得到20,将20压入栈;

遇到+运算符,弹出20和1,计算1+20的值,得到21,将21压入栈;

遇到5,将5压入栈;

遇到-运算符,弹出5和21,计算21-5的值,得到16为最终结果

代码实现

public class ReversePolishNotation {

    public static void main(String[] args) {
        String notation = "10 2 3 + 4 * + 5 -";
        ReversePolishNotation reversePN = new ReversePolishNotation();
        Stack<Integer> numStack = new Stack<>();
        //以空格分隔上述表达式,存到数组中
        String[] s = notation.split(" ");
        //遍历数组
        for (int i = 0; i < s.length; i++) {
            if (!reversePN.isOperator(s[i])){
                //如果不是运算符,则压栈
                numStack.push(Integer.parseInt(s[i]));
            } else {
                //为运算符,则取出栈顶的两个数字进行运算
                int result = reversePN.calculation(numStack.pop(), numStack.pop(), s[i]);
                //将结果压栈
                numStack.push(result);
            }
        }
        //循环结束,栈中仅剩的一个元素及为结果
        System.out.println(numStack.pop());
    }
    //判断是否是运算符
    public boolean isOperator(String oper){
        return oper.equals("+") ||oper.equals("-")  ||oper.equals("*")  ||oper.equals("/") ;
    }
    //计算
    public int calculation(int num1, int num2, String oper){
        switch (oper){
            case "+":
                return num2 + num1;
            case "-":
                return num2 - num1;
            case "*":
                return num2 * num1;
            case "/":
                return num2 / num1;
            default:
                return 0;
        }
    }
}

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • java数据结构与算法之中缀表达式转为后缀表达式的方法

    本文实例讲述了java数据结构与算法之中缀表达式转为后缀表达式的方法.分享给大家供大家参考,具体如下: //stack public class StackX { private int top; private char[] stackArray; private int maxSize; //constructor public StackX(int maxSize){ this.maxSize = maxSize; this.top = -1; stackArray = new char[

  • Java中缀表达式转后缀表达式实现方法详解

    本文实例讲述了Java中缀表达式转后缀表达式实现方法.分享给大家供大家参考,具体如下: 本文先给出思路与方法,最后将给出完整代码 项目实战: https://www.jb51.net/article/158335.htm 算法综述: 一.中缀表达式转后缀表达式: 1.中缀表达式要转后缀表达式,首先需要两个Stack(栈),其中一个应用于存放字符,另一个用于存放数字. 2.读到数字直接存入数字栈中,读到字符时,要咸鱼栈内前一元素(字符)进行比较,当当前(要存入的字符)优先级大于迁移字符时才存入,否

  • 带你了解Java数据结构和算法之前缀,中缀和后缀表达式

    目录 1.人如何解析算术表达式 ①.求值 3+4-5 ②.求值 3+4*5 2.计算机如何解析算术表达式 3.后缀表达式 ①.如何将中缀表达式转换为后缀表达式? 一.先自定义一个栈 二.前缀表达式转换为后缀表达式 三.测试 四.结果 五.分析 ②.计算机如何实现后缀表达式的运算? 4.前缀表达式 ①.如何将中缀表达式转换为前缀表达式? ②.计算机如何实现前缀表达式的运算? 总结 1.人如何解析算术表达式 如何解析算术表达式?或者换种说法,遇到某个算术表达式,我们是如何计算的: ①.求值 3+4-

  • 关于后缀表达式的java实现过程

    目录 中缀表示法java实现 后缀表示法 逆波兰表达式的计算方式 与中缀记法的转换 java后缀表达式的计算 实现方法 示例 代码实现 中缀表示法java实现 观察一个普通的算式:3+4*5 我们当然知道,应该先计算 4*5 再将这个结果和3相加,就能得到最后的结果. 如果是一个复杂一些的算式:3+4*((5-6)/7+8) 这依然难不倒我们,只要牢记()的优先级最高,然后是*/,最后是+-就没问题了,这就是通常的中缀表示法. 但是通过算法分析,这样的表达式,由于每一次都需要判断优先级,所以运行

  • Java lambda表达式实现Flink WordCount过程解析

    这篇文章主要介绍了Java lambda表达式实现Flink WordCount过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 本篇我们将使用Java语言来实现Flink的单词统计. 代码开发 环境准备 导入Flink 1.9 pom依赖 <dependencies> <dependency> <groupId>org.apache.flink</groupId> <artifactId>

  • Java中缀表达式转后缀表达式流程详解

    目录 一.栈 1.栈的基本介绍 2.栈的底层实现 二.中缀表达式转后缀表达式 1.拆解中缀表达式 2.中缀转后缀的算法 3.中缀转后缀代码解析 4.对后缀表达式进行计算 一.栈 1.栈的基本介绍 栈是⼀个先⼊后出的有序列表.栈(stack)是限制线性表中元素的插⼊和删除只能在线性表的同⼀端进⾏的⼀种特殊线性表.允许插⼊和删除的⼀端,为变化的⼀端,称为栈顶(Top),另⼀端为固定的⼀端,称为栈底(Bottom). 根据栈的定义可知,最先放⼊栈中元素在栈底,最后放⼊的元素在栈顶,⽽删除元素刚好相反,

  • Golang栈结构和后缀表达式实现计算器示例

    目录 引言 问题 中缀.后缀表达式的计算 人利用中缀表达式计算值 计算机利用后缀表达式计算值 计算后缀表达式的代码实现 中缀表达式转后缀表达式 转换过程 转换的代码实现 总结 引言 只进行基本的四则运算,利用栈结构和后缀表达式来计算数学表达式的值. 本文代码:GitHub 运行效果: 问题 如果只能进行两个值的加减乘除,如何编程计算一个数学表达式的值? 比如计算 1+2*3+(4*5+6)*7,我们知道优先级顺序 () 大于 * / 大于 + - ,直接计算得 1+6+26*7 = 189 中缀

  • 详解C++编程中的主表达式与后缀表达式编写基础

    主表达式 主表达式是更复杂的表达式的构造块.它们是文本.名称以及范围解析运算符 (::) 限定的名称.主表达式可以具有以下任一形式: literal this :: name name ( expression ) literal 是常量主表达式.其类型取决于其规范的形式. this 关键字是指向类对象的指针.它在非静态成员函数中可用,并指向为其调用函数的类的实例. this 关键字只能在类成员函数体的外部使用. this 指针的类型是未特别修改 this 指针的函数中的 type *const

  • PHP实现基于栈的后缀表达式求值功能

    本文实例讲述了PHP实现基于栈的后缀表达式求值功能.分享给大家供大家参考,具体如下: 后缀表达式概述 后缀表达式,指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行(不再考虑运算符的优先规则). 实现代码: <?php class Stack{ public $stack; public $stack_top; public function __construct(){ $this->stack=array(); $this->stack_t

  • Jmeter调用java脚本过程详解

    这篇文章主要介绍了Jmeter调用java脚本过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 jmeter为纯java编写,所以有三种方式使用java脚本,分别是:调用 .java 文件:调用 .class文件 :调用 .jar 文件 1. jmeter调用.java文件 1>. 新建一java脚本,内容如下: 2>. 新建线程组>>添加BeanShell Sampler.Debug PostProcessor.查看结果树

随机推荐