图文详解JAVA实现快速排序

高快省的排序算法

有没有既不浪费空间又可以快一点的排序算法呢?那就是“快速排序”啦!光听这个名字是不是就觉得很高端呢。

假设我们现在对“6 1 2 7 9 3 4 5 10 8”这个10个数进行排序。首先在这个序列中随便找一个数作为基准数(不要被这个名词吓到了,就是一个用来参照的数,待会你就知道它用来做啥的了)。为了方便,就让第一个数6作为基准数吧。接下来,需要将这个序列中所有比基准数大的数放在6的右边,比基准数小的数放在6的左边,类似下面这种排列:

3 1 2 5 4 6 9 7 10 8

在初始状态下,数字6在序列的第1位。我们的目标是将6挪到序列中间的某个位置,假设这个位置是k。现在就需要寻找这个k,并且以第k位为分界点,左边的数都小于等于6,右边的数都大于等于6。想一想,你有办法可以做到这点吗?

排序算法显神威

方法其实很简单:分别从初始序列“6 1 2 7 9 3 4 5 10 8”两端开始“探测”。先从右往左找一个小于6的数,再从左往右找一个大于6的数,然后交换他们。这里可以用两个变量i和j,分别指向序列最左边和最右边。我们为这两个变量起个好听的名字“哨兵i”和“哨兵j”。刚开始的时候让哨兵i指向序列的最左边(即i=1),指向数字6。让哨兵j指向序列的最右边(即=10),指向数字。

首先哨兵j开始出动。因为此处设置的基准数是最左边的数,所以需要让哨兵j先出动,这一点非常重要(请自己想一想为什么)。哨兵j一步一步地向左挪动(即j–),直到找到一个小于6的数停下来。接下来哨兵i再一步一步向右挪动(即i++),直到找到一个数大于6的数停下来。最后哨兵j停在了数字5面前,哨兵i停在了数字7面前。

现在交换哨兵i和哨兵j所指向的元素的值。交换之后的序列如下:

6 1 2 5 9 3 4 7 10 8

到此,第一次交换结束。接下来开始哨兵j继续向左挪动(再友情提醒,每次必须是哨兵j先出发)。他发现了4(比基准数6要小,满足要求)之后停了下来。哨兵i也继续向右挪动的,他发现了9(比基准数6要大,满足要求)之后停了下来。此时再次进行交换,交换之后的序列如下:

6 1 2 5 4 3 9 7 10 8

第二次交换结束,“探测”继续。哨兵j继续向左挪动,他发现了3(比基准数6要小,满足要求)之后又停了下来。哨兵i继续向右移动,糟啦!此时哨兵i和哨兵j相遇了,哨兵i和哨兵j都走到3面前。说明此时“探测”结束。我们将基准数6和3进行交换。交换之后的序列如下:

3 1 2 5 4 6 9 7 10 8

到此第一轮“探测”真正结束。此时以基准数6为分界点,6左边的数都小于等于6,6右边的数都大于等于6。回顾一下刚才的过程,其实哨兵j的使命就是要找小于基准数的数,而哨兵i的使命就是要找大于基准数的数,直到i和j碰头为止。

OK,解释完毕。现在基准数6已经归位,它正好处在序列的第6位。此时我们已经将原来的序列,以6为分界点拆分成了两个序列,左边的序列是“3 1 2 5 4”,右边的序列是“9 7 10 8”。接下来还需要分别处理这两个序列。因为6左边和右边的序列目前都还是很混乱的。不过不要紧,我们已经掌握了方法,接下来只要模拟刚才的方法分别处理6左边和右边的序列即可。现在先来处理6左边的序列现吧。

左边的序列是“3 1 2 5 4”。请将这个序列以3为基准数进行调整,使得3左边的数都小于等于3,3右边的数都大于等于3。好了开始动笔吧

如果你模拟的没有错,调整完毕之后的序列的顺序应该是:

2 1 3 5 4

OK,现在3已经归位。接下来需要处理3左边的序列“2 1”和右边的序列“5 4”。对序列“2 1”以2为基准数进行调整,处理完毕之后的序列为“1 2”,到此2已经归位。序列“1”只有一个数,也不需要进行任何处理。至此我们对序列“2 1”已全部处理完毕,得到序列是“1 2”。序列“5 4”的处理也仿照此方法,最后得到的序列如下:

1 2 3 4 5 6 9 7 10 8

对于序列“9 7 10 8”也模拟刚才的过程,直到不可拆分出新的子序列为止。最终将会得到这样的序列,如下

1 2 3 4 5 6 7 8 9 10

到此,排序完全结束。细心的同学可能已经发现,快速排序的每一轮处理其实就是将这一轮的基准数归位,直到所有的数都归位为止,排序就结束了。下面上个霸气的图来描述下整个算法的处理过程。

这是为什么呢?

快速排序之所比较快,因为相比冒泡排序,每次交换是跳跃式的。每次排序的时候设置一个基准点,将小于等于基准点的数全部放到基准点的左边,将大于等于基准点的数全部放到基准点的右边。这样在每次交换的时候就不会像冒泡排序一样每次只能在相邻的数之间进行交换,交换的距离就大的多了。因此总的比较和交换次数就少了,速度自然就提高了。当然在最坏的情况下,仍可能是相邻的两个数进行了交换。因此快速排序的最差时间复杂度和冒泡排序是一样的都是O(N2),它的平均时间复杂度为O(NlogN)。其实快速排序是基于一种叫做“二分”的思想。我们后面还会遇到“二分”思想,到时候再聊。先上代码,如下

代码实现:

public class QuickSort {
    public static void quickSort(int[] arr,int low,int high){
        int i,j,temp,t;
        if(low>high){
            return;
        }
        i=low;
        j=high;
        //temp就是基准位
        temp = arr[low];

        while (i<j) {
            //先看右边,依次往左递减
            while (temp<=arr[j]&&i<j) {
                j--;
            }
            //再看左边,依次往右递增
            while (temp>=arr[i]&&i<j) {
                i++;
            }
            //如果满足条件则交换
            if (i<j) {
                t = arr[j];
                arr[j] = arr[i];
                arr[i] = t;
            }

        }
        //最后将基准为与i和j相等位置的数字交换
         arr[low] = arr[i];
         arr[i] = temp;
        //递归调用左半数组
        quickSort(arr, low, j-1);
        //递归调用右半数组
        quickSort(arr, j+1, high);
    }

    public static void main(String[] args){
        int[] arr = {10,7,2,4,7,62,3,4,2,1,8,9,19};
        quickSort(arr, 0, arr.length-1);
        for (int i = 0; i < arr.length; i++) {
            System.out.println(arr[i]);
        }
    }
}

输出为
1
2
2
3
4
4
7
7
8
9
10
19
62

总结

到此这篇关于JAVA实现快速排序的文章就介绍到这了,更多相关JAVA快速排序内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • java 合并排序算法、冒泡排序算法、选择排序算法、插入排序算法、快速排序算法的描述

    算法是在有限步骤内求解某一问题所使用的一组定义明确的规则.通俗点说,就是计算机解题的过程.在这个过程中,无论是形成解题思路还是编写程序,都是在实施某种算法.前者是推理实现的算法,后者是操作实现的算法. 一个算法应该具有以下五个重要的特征: 1.有穷性: 一个算法必须保证执行有限步之后结束: 2.确切性: 算法的每一步骤必须有确切的定义: 3.输入:一个算法有0个或多个输入,以刻画运算对象的初始情况: 4.输出:一个算法有一个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的:

  • Java 快速排序(QuickSort)原理及实现代码

    快速排序(QuickSort )是常用到的效率比较高的一种排序算法,在面试过程中也经常提及.下面就详细讲解一下他的原理.给出一个Java版本的实现. 快速排序思想: 通过对数据元素集合Rn 进行一趟排序划分出独立的两个部分.其中一个部分的关键字比另一部分的关键字小.然后再分别对两个部分的关键字进行一趟排序,直到独立的元素只有一个,此时整个元素集合有序. 快速排序的过程--挖坑填数法(这是一个很形象的名称),对一个元素集合R[ low ... high ] ,首先取一个数(一般是R[low] )做

  • Java中的数组排序方式(快速排序、冒泡排序、选择排序)

    1.使用JavaApi文档中的Arrays类中的sort()进行快速排序 复制代码 代码如下: import java.util.Arrays; public class TestOne{ public static void main(String [] args){ int [] array={2,0,1,4,5,8}; Arrays.sort(array);//调用Arrays的静态方法Sort进行排序,升序排列 for(int show:array){ System.out.printl

  • 快速排序的原理及java代码实现

    概述 快速排序是由东尼·霍尔所发展的一种排序算法.在平均状况下,排序 n 个项目要Ο(nlogn)次比较.事实上,快速排序通常明显比其他Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来,并且在大部分真实世界的数据,可以决定设计的选择,减少所需时间的二次方项之可能性. 快速排序,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,然后分别对这两部分记录继续进行排序,以达到整个序列有序的目的. 形象图示:

  • Java实现对两个List快速去重并排序操作示例

    本文实例讲述了Java实现对两个List快速去重并排序操作.分享给大家供大家参考,具体如下: 1:去重并排序 package twolist; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.uti

  • 快速排序的深入详解以及java实现

    快速排序作为一种高效的排序算法被广泛应用,SUN的JDK中的Arrays.sort 方法用的就是快排.快排采用了经典的分治思想(divide and conquer): Divide:选取一个基元X(一般选取数组第一个元素),通过某种分区操作(partitioning)将数组划分为两个部分:左半部分小于等于X,右半部分大于等于X.Conquer: 左右两个子数组递归地调用Divide过程.Combine:快排作为就地排序算法(in place sort),不需要任何合并操作可以看出快排的核心部分

  • 图文讲解Java中实现quickSort快速排序算法的方法

    相对冒泡排序.选择排序等算法而言,快速排序的具体算法原理及实现有一定的难度.为了更好地理解快速排序,我们仍然以举例说明的形式来详细描述快速排序的算法原理.在前面的排序算法中,我们以5名运动员的身高排序问题为例进行讲解,为了更好地体现快速排序的特点,这里我们再额外添加3名运动员.实例中的8名运动员及其身高信息详细如下(F.G.H为新增的运动员): A(181).B(169).C(187).D(172).E(163).F(191).G(189).H(182) 在前面的排序算法中,这些排序都是由教练主

  • Java编程实现快速排序及优化代码详解

    普通快速排序 找一个基准值base,然后一趟排序后让base左边的数都小于base,base右边的数都大于等于base.再分为两个子数组的排序.如此递归下去. public class QuickSort { public static <T extends Comparable<? super T>> void sort(T[] arr) { sort(arr, 0, arr.length - 1); } public static <T extends Comparabl

  • java数组排序示例(冒泡排序、快速排序、希尔排序、选择排序)

    快速排序法主要是运用了Arrays中的一个方法Arrays.sort()实现. 冒泡法是运用遍历数组进行比较,通过不断的比较将最小值或者最大值一个一个的遍历出来. 选择排序法是将数组的第一个数据作为最大或者最小的值,然后通过比较循环,输出有序的数组. 插入排序是选择一个数组中的数据,通过不断的插入比较最后进行排序. 复制代码 代码如下: package com.firewolf.sort; public class MySort { /**  * @param args  */ public s

  • 快速排序算法原理及java递归实现

    快速排序 对冒泡排序的一种改进,若初始记录序列按关键字有序或基本有序,蜕化为冒泡排序.使用的是递归原理,在所有同数量级O(n longn) 的排序方法中,其平均性能最好.就平均时间而言,是目前被认为最好的一种内部排序方法 基本思想是:通过一躺排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 三个指针: 第一个指针称为pivotkey指针(枢轴),第二个指

随机推荐