Keras中的多分类损失函数用法categorical_crossentropy

from keras.utils.np_utils import to_categorical

注意:当使用categorical_crossentropy损失函数时,你的标签应为多类模式,例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0。

可以使用这个方法进行转换:

from keras.utils.np_utils import to_categorical
categorical_labels = to_categorical(int_labels, num_classes=None)

以mnist数据集为例:

from keras.datasets import mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()
y_train = to_categorical(y_train, 10)
y_test = to_categorical(y_test, 10)

...
model.compile(loss='categorical_crossentropy', optimizer='adam')
model.fit(X_train, y_train, epochs=100, batch_size=1, verbose=2)

补充知识:Keras中损失函数binary_crossentropy和categorical_crossentropy产生不同结果的分析

问题

在使用keras做对心电信号分类的项目中发现一个问题,这个问题起源于我的一个使用错误:

binary_crossentropy 二进制交叉熵用于二分类问题中,categorical_crossentropy分类交叉熵适用于多分类问题中,我的心电分类是一个多分类问题,但是我起初使用了二进制交叉熵,代码如下所示:

sgd = SGD(lr=0.003, decay=0, momentum=0.7, nesterov=False)
model.compile(loss='categorical_crossentropy',
  optimizer='sgd',metrics=['accuracy'])
model.fit(X_train, Y_train, validation_data=(X_test,Y_test),batch_size=16, epochs=20)
score = model.evaluate(X_test, Y_test, batch_size=16)

注意:我的CNN网络模型在最后输入层正确使用了应该用于多分类问题的softmax激活函数

后来我在另一个残差网络模型中对同类数据进行相同的分类问题中,正确使用了分类交叉熵,令人奇怪的是残差模型的效果远弱于普通卷积神经网络,这一点是不符合常理的,经过多次修改分析终于发现可能是损失函数的问题,因此我使用二进制交叉熵在残差网络中,终于取得了优于普通卷积神经网络的效果。

因此可以断定问题就出在所使用的损失函数身上

原理

本人也只是个只会使用框架的调参侠,对于一些原理也是一知半解,经过了学习才大致明白,将一些原理记录如下:

要搞明白分类熵和二进制交叉熵先要从二者适用的激活函数说起

激活函数

sigmoid, softmax主要用于神经网络输出层的输出。

softmax函数

softmax可以看作是Sigmoid的一般情况,用于多分类问题。

Softmax函数将K维的实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于 (0,1) 之间。常用于多分类问题。

sigmoid函数

Sigmoid 将一个实数映射到 (0,1) 的区间,可以用来做二分类。Sigmoid 在特征相差比较复杂或是相差不是特别大时效果比较好。Sigmoid不适合用在神经网络的中间层,因为对于深层网络,sigmoid 函数反向传播时,很容易就会出现梯度消失的情况(在 sigmoid 接近饱和区时,变换太缓慢,导数趋于 0,这种情况会造成信息丢失),从而无法完成深层网络的训练。所以Sigmoid主要用于对神经网络输出层的激活。

分析

所以说多分类问题是要softmax激活函数配合分类交叉熵函数使用,而二分类问题要使用sigmoid激活函数配合二进制交叉熵函数适用,但是如果在多分类问题中使用了二进制交叉熵函数最后的模型分类效果会虚高,即比模型本身真实的分类效果好。

所以就会出现我遇到的情况,这里引用了论坛一位大佬的样例:

model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) # WRONG way

model.fit(x_train, y_train,
   batch_size=batch_size,
   epochs=2, # only 2 epochs, for demonstration purposes
   verbose=1,
   validation_data=(x_test, y_test))

# Keras reported accuracy:
score = model.evaluate(x_test, y_test, verbose=0)
score[1]
# 0.9975801164627075

# Actual accuracy calculated manually:
import numpy as np
y_pred = model.predict(x_test)
acc = sum([np.argmax(y_test[i])==np.argmax(y_pred[i]) for i in range(10000)])/10000
acc
# 0.98780000000000001

score[1]==acc
# False

样例中模型在评估中得到的准确度高于实际测算得到的准确度,网上给出的原因是Keras没有定义一个准确的度量,但有几个不同的,比如binary_accuracy和categorical_accuracy,当你使用binary_crossentropy时keras默认在评估过程中使用了binary_accuracy,但是针对你的分类要求,应当采用的是categorical_accuracy,所以就造成了这个问题(其中的具体原理我也没去看源码详细了解)

解决

所以问题最后的解决方法就是:

对于多分类问题,要么采用

from keras.metrics import categorical_accuracy
model.compile(loss='binary_crossentropy',
 optimizer='adam', metrics=[categorical_accuracy])

要么采用

model.compile(loss='categorical_crossentropy',
optimizer='adam',metrics=['accuracy'])

以上这篇Keras中的多分类损失函数用法categorical_crossentropy就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • keras自定义回调函数查看训练的loss和accuracy方式

    前言: keras是一个十分便捷的开发框架,为了更好的追踪网络训练过程中的损失函数loss和准确率accuracy,我们有几种处理方式,第一种是直接通过 history=model.fit(),来返回一个history对象,通过这个对象可以访问到训练过程训练集的loss和accuracy以及验证集的loss和accuracy. 第二种方式就是通过自定义一个回调函数Call backs,来实现这一功能,本文主要讲解第二种方式. 一.如何构建回调函数Callbacks 本文所针对的例子是卷积神经网络

  • 细数nn.BCELoss与nn.CrossEntropyLoss的区别

    以前我浏览博客的时候记得别人说过,BCELoss与CrossEntropyLoss都是用于分类问题.可以知道,BCELoss是Binary CrossEntropyLoss的缩写,BCELoss CrossEntropyLoss的一个特例,只用于二分类问题,而CrossEntropyLoss可以用于二分类,也可以用于多分类. 不过我重新查阅了一下资料,发现同样是处理二分类问题,BCELoss与CrossEntropyLoss是不同的.下面我详细讲一下哪里不同. 1.使用nn.BCELoss需要在

  • 基于MSELoss()与CrossEntropyLoss()的区别详解

    基于pytorch来讲 MSELoss()多用于回归问题,也可以用于one_hotted编码形式, CrossEntropyLoss()名字为交叉熵损失函数,不用于one_hotted编码形式 MSELoss()要求batch_x与batch_y的tensor都是FloatTensor类型 CrossEntropyLoss()要求batch_x为Float,batch_y为LongTensor类型 (1)CrossEntropyLoss() 举例说明: 比如二分类问题,最后一层输出的为2个值,比

  • pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

    公式 首先需要了解CrossEntropyLoss的计算过程,交叉熵的函数是这样的: 其中,其中yi表示真实的分类结果.这里只给出公式,关于CrossEntropyLoss的其他详细细节请参照其他博文. 测试代码(一维) import torch import torch.nn as nn import math criterion = nn.CrossEntropyLoss() output = torch.randn(1, 5, requires_grad=True) label = tor

  • Keras中的多分类损失函数用法categorical_crossentropy

    from keras.utils.np_utils import to_categorical 注意:当使用categorical_crossentropy损失函数时,你的标签应为多类模式,例如如果你有10个类别,每一个样本的标签应该是一个10维的向量,该向量在对应有值的索引位置为1其余为0. 可以使用这个方法进行转换: from keras.utils.np_utils import to_categorical categorical_labels = to_categorical(int_

  • 浅谈keras中自定义二分类任务评价指标metrics的方法以及代码

    对于二分类任务,keras现有的评价指标只有binary_accuracy,即二分类准确率,但是评估模型的性能有时需要一些其他的评价指标,例如精确率,召回率,F1-score等等,因此需要使用keras提供的自定义评价函数功能构建出针对二分类任务的各类评价指标. keras提供的自定义评价函数功能需要以如下两个张量作为输入,并返回一个张量作为输出. y_true:数据集真实值组成的一阶张量. y_pred:数据集输出值组成的一阶张量. tf.round()可对张量四舍五入,因此tf.round(

  • keras中epoch,batch,loss,val_loss用法说明

    1.epoch Keras官方文档中给出的解释是:"简单说,epochs指的就是训练过程接中数据将被"轮"多少次" (1)释义: 训练过程中当一个完整的数据集通过了神经网络一次并且返回了一次,这个过程称为一个epoch,网络会在每个epoch结束时报告关于模型学习进度的调试信息. (2)为什么要训练多个epoch,即数据要被"轮"多次 在神经网络中传递完整的数据集一次是不够的,对于有限的数据集(是在批梯度下降情况下),使用一个迭代过程,更新权重一

  • Keras中 ImageDataGenerator函数的参数用法

    一.Keras ImageDataGenerator参数 from keras.preprocessing.image import ImageDataGenerator keras.preprocessing.image.ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization = False, samplewise_std_normalization

  • 浅谈keras中的目标函数和优化函数MSE用法

    mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean() model = Sequential() model.add(Dense(64, init='uniform', input_dim=10)) model.add(Activation('tanh')) model.add(Activation('softmax')) sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, ne

  • keras中的loss、optimizer、metrics用法

    用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下面的函数 例如: sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', opt

  • Keras中的两种模型:Sequential和Model用法

    在Keras中有两种深度学习的模型:序列模型(Sequential)和通用模型(Model).差异在于不同的拓扑结构. 序列模型 Sequential 序列模型各层之间是依次顺序的线性关系,模型结构通过一个列表来制定. from keras.models import Sequential from keras.layers import Dense, Activation layers = [Dense(32, input_shape = (784,)), Activation('relu')

  • 基于keras中的回调函数用法说明

    keras训练 fit( self, x, y, batch_size=32, nb_epoch=10, verbose=1, callbacks=[], validation_split=0.0, validation_data=None, shuffle=True, class_weight=None, sample_weight=None ) 1. x:输入数据.如果模型只有一个输入,那么x的类型是numpy array,如果模型有多个输入,那么x的类型应当为list,list的元素是对应

  • keras中的backend.clip用法

    如下所示: keras.backend.clip(x, min_value, max_value) 逐元素clip(将超出指定范围的数强制变为边界值) 参数 x: 张量或变量. min_value: Python 浮点或整数. max_value: Python 浮点或整数. 返回 一个张量. import tensorflow as tf from keras import backend a = tf.constant(2.1) #定义tensor常量 b = backend.clip(a,

  • 浅谈keras中的keras.utils.to_categorical用法

    如下所示: to_categorical(y, num_classes=None, dtype='float32') 将整型标签转为onehot.y为int数组,num_classes为标签类别总数,大于max(y)(标签从0开始的). 返回:如果num_classes=None,返回len(y) * [max(y)+1](维度,m*n表示m行n列矩阵,下同),否则为len(y) * num_classes.说出来显得复杂,请看下面实例. import keras ohl=keras.utils

随机推荐