Python 实现绘制子图及子图刻度的变换等问题

1、涉及到图的对比会用到子图形式展示,先看看效果

2、绘制代码如下

accuracy_alexnet_clef = [78.05, 78.43, 78.65, 78.61, 78.69]
accuracy_resnet_clef  = [84.56, 84.84, 85.07, 85.01, 85.13]
accuracy_alexnet_office10 = [87.30, 87.57, 87.78, 87.72, 87.50]
accuracy_resnet_office10  = [96.31, 96.35, 96.62, 96.43, 96.15]
orders = ['2', '3', '5', '10', '20']
names = ['alexnet', 'resnet']
# 创建两幅子图
f, ax = plt.subplots(2,1,figsize=(6, 8))
# 第一根柱子偏移坐标
x = [i for i in range(len(orders))]
# 第二根柱子偏移坐标
x1 = [i + 0.35 for i in range(len(orders))]
# 两幅子图之间的间距
plt.subplots_adjust(wspace =0, hspace =0.4)
# 选择第一幅图
figure_1 = ax[0]
# 设置x轴偏移和标签
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
# 设置y轴的范围
figure_1.set_ylim(bottom=77,top=86)
# 绘制柱状图,x表示x轴内容,accuracy_alexnet_clef表示y轴的内容,alpha表示透明度,width表示柱子宽度
# label表示图列
figure_1.bar(x, accuracy_alexnet_clef, alpha=0.7, width = 0.35, facecolor = '#4c72b0', label='Alexnet')
figure_1.bar(x1, accuracy_resnet_clef, alpha=0.7, width = 0.35, facecolor = '#dd8452', label='Resnet')
figure_1.set_ylabel('Accuracy%') # 设置y轴的标签
figure_1.set_xlabel('Order') # 设置x轴的名称
figure_1.set_title('Alexnet') # 设置图一标题名称
figure_1.legend() # 显示图一的图例
# 选择第二幅图
figure_2 = ax[1]
figure_1.set_xticks([i+0.15 for i in x])
figure_1.set_xticklabels(orders)
figure_2.set_ylim(bottom=77,top=100)
figure_2.bar(x, accuracy_alexnet_office10,alpha=0.7,width = 0.35,facecolor = '#c44e52', label='Alexnet')
figure_2.bar(x1, accuracy_resnet_office10,alpha=0.7,width = 0.35,facecolor = '#5f9e6e', label='Alexnet')
# figure_2.bar(orders, accuracy_resnet_clef,alpha=0.7,width = 0.35,facecolor = '#dd8452')
figure_2.set_ylabel('Accuracy%')
figure_2.set_xlabel('Order')
figure_2.set_title('Resnet')
figure_2.legend()
f.suptitle('ImageCLEF_DA') # 设置总标题
plt.show()

补充:解决python中subplot绘制子图时子图坐标轴标签以及标题重叠的问题

1.问题描述

在使用python的matplotlib中的subplot绘制子图时出现信息相互重叠的情况。

2.解决方案

在plt.show()前面添加代码plt.tight_layout()即可解决。

plt.subplot(211)
plt.figure(1)
plt.hist(x, 10)
plt.title("Histogram of sample points")
plt.subplot(212)
plt.plot(x,X.pdf(x))
plt.title("Probability Density Function(PDF)")
plt.tight_layout()
plt.show()

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • python 实现在一张图中绘制一个小的子图方法

    有时候为了直观展现图的信息,可以在大图中添加小子图的方式进行数据分析,如下图所示: 具体的代码如下:该图连接了数据库,当然重要的不是数据展示,而是添加子图的方法. import matplotlib.pyplot as plt import MySQLdb as mdb import numpy as np from mpl_toolkits.axes_grid1.inset_locator import inset_axes from mpl_toolkits.axes_grid1.inset

  • Python使用add_subplot与subplot画子图操作示例

    本文实例讲述了Python使用add_subplot与subplot画子图操作.分享给大家供大家参考,具体如下: 子图:就是在一张figure里面生成多张子图. Matplotlib对象简介 FigureCanvas  画布    Figure        图    Axes          坐标轴(实际画图的地方) 注意,pyplot的方式中plt.subplot()参数和面向对象中的add_subplot()参数和含义都相同. 使用面向对象的方式 #!/usr/bin/python #c

  • Python绘图Matplotlib之坐标轴及刻度总结

    学习https://matplotlib.org/gallery/index.html 记录,描述不一定准确,具体请参考官网 Matplotlib使用总结图 import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False # 用来正常显示负号 import pandas as pd import nump

  • 基于Python绘制子图及子图刻度的变换等的问题

    1.涉及到图的对比会用到子图形式展示 先看看效果 2.绘制代码如下 accuracy_alexnet_clef = [78.05, 78.43, 78.65, 78.61, 78.69] accuracy_resnet_clef = [84.56, 84.84, 85.07, 85.01, 85.13] accuracy_alexnet_office10 = [87.30, 87.57, 87.78, 87.72, 87.50] accuracy_resnet_office10 = [96.31

  • Python 实现绘制子图及子图刻度的变换等问题

    1.涉及到图的对比会用到子图形式展示,先看看效果 2.绘制代码如下 accuracy_alexnet_clef = [78.05, 78.43, 78.65, 78.61, 78.69] accuracy_resnet_clef = [84.56, 84.84, 85.07, 85.01, 85.13] accuracy_alexnet_office10 = [87.30, 87.57, 87.78, 87.72, 87.50] accuracy_resnet_office10 = [96.31

  • Python Matplotlib绘制多子图详解

    通过获取子图的label和线型来合并图例 注意添加label #导入数据(读者可忽略) pre_lp=total_res#组合模型 true=diff1[-pre_day:]#真实值 pre_ph=results_data["yhat"]#prophet pre_lstm=reslut#lstm pre_ari=data_ari['data_pre']#arima #设置中文字体 rcParams['font.sans-serif'] = 'kaiti' # 生成一个时间序列 (读者可

  • Python+matplotlib绘制多子图的方法详解

    目录 本文速览 1.matplotlib.pyplot api 方式添加子图 2.面向对象方式添加子图 3.matplotlib.pyplot add_subplot方式添加子图 4.matplotlib.gridspec.GridSpec方式添加子图 5.子图中绘制子图 6.任意位置绘制子图(plt.axes) 本文速览 matplotlib.pyplot api 绘制子图 面向对象方式绘制子图 matplotlib.gridspec.GridSpec绘制子图 任意位置添加子图 关于pyplo

  • python绘制多个子图的实例

    绘制八个子图 import matplotlib.pyplot as plt fig = plt.figure() shape=['.','o','v','>','<','8','s','*'] for j in range(8): x=[i for i in range(6)] y=[i**2 for i in range(6)] ax = fig.add_subplot(241+j) ax.scatter(x,y,c='r',marker=shape[j]) ax.set_title('第

  • python使用matplotlib:subplot绘制多个子图的示例

    数据可视化的时候,常常需要将多个子图放在同一个画板上进行比较,python 的matplotlib包下的subplot可以帮助完成子功能. part1 绘制如下子图 import matplotlib.pyplot as plt plt.figure(figsize=(6,6), dpi=80) plt.figure(1) ax1 = plt.subplot(221) plt.plot([1,2,3,4],[4,5,7,8], color="r",linestyle = "-

  • matplotlib subplot绘制多个子图的方法示例

    在matplotlib下,一个Figure对象可以包含多个子图(Axes),可以使用subplot()快速绘制,其调用形式如下: subplot(numRows, numCols, plotNum) 图表的整个绘图区域被分成numRows行和numCols列,plotNum参数指定创建的Axes对象所在的区域,如何理解呢? 如果numRows = 3,numCols = 2,那整个绘制图表样式为3X2的图片区域,用坐标表示为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).

  • Python matplotlib 绘制双Y轴曲线图的示例代码

    Matplotlib简介 Matplotlib是非常强大的python画图工具 Matplotlib可以画图线图.散点图.等高线图.条形图.柱形图.3D图形.图形动画等. Matplotlib安装 pip3 install matplotlib#python3 双X轴的 可以理解为共享y轴 ax1=ax.twiny() ax1=plt.twiny() 双Y轴的 可以理解为共享x轴 ax1=ax.twinx() ax1=plt.twinx() 自动生成一个例子 x = np.arange(0.,

  • 如何利用Python matplotlib绘制雷达图

    本篇文章介绍使用matplotlib绘制雷达图. 雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形.雷达图可以形象地展示相同事物的多维指标,雷达图几乎随处可见,应用场景非常多. 一.matplotlib绘制圆形雷达图 # coding=utf-8 import numpy as np import matplotlib.pyplot as plt results = [{"大学英语": 87, "高等数学": 79, "体育":

  • Python实现绘制Matlab格式的地图边框的示例代码

    目录 1.Python绘制色斑图 2.Python绘制比例尺.指南针 3.Python绘制Matlab格式的地图边框 1.Python绘制色斑图 import matplotlib.pyplot as plt import numpy as np from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter import cartopy.crs as ccrs import cartopy.feature as cfea

随机推荐