python的pyecharts绘制各种图表详细(附代码)

环境:pyecharts库,echarts-countries-pypkg,echarts-china-provinces-pypkg,echarts-china-cities-pypkg

数据:2018年4月16号的全国各地最高最低和天气类型的数据——2018-4-16.json(爬虫爬的)

代码:天气数据爬虫代码,图表绘制代码 代码地址:https://github.com/goodloving/pyecharts.git(py文件)

一、公共属性

1、标题栏的属性:一般在实例化(初始化)类型时给与,如bar = Bar(“大标题”,“副标题”,···各种属性···)

title_color = “颜色”:标题颜色,可以是‘red'或者‘#0000'

title_pos = ‘位置':标题位置,如‘center',‘left'···

width = 1200:图表的宽

height = 800:图表的高

background_color = "颜色":图表的背景色

·····

2、标签栏的属性:如bar.add(“标签”,x,values,···属性···)

'mark_'类,通个'mark_'显示,如 mark_point['max', 'min', 'average']:标出最大最小和平均值的点,

mark_point_textcolor,mark_line_symbolsize·····

'legend_'类,如legend_pos=‘left':标签的位置

'is_'类,如is_label_show=True:显示每个点的值,is_datazoom_show=True:实现移动控制x轴的数量

is_convert = True:x,y轴是否调换

eg:

bar = pyecharts.Bar("全国各地最高气温", "2018-4-18", title_color='red', title_pos='right', width=1400, height=700, background_color='#404a59')
bar.add("最高气温", cities, highs, mark_point=['max', 'min', 'average'], is_label_show=True, is_datazoom_show=True, legend_pos='left')
bar.render('Bar-High.html')

3、Geo,Map无法显示底图

pyecharts v0.3.2以后,pyecharts 将不再自带地图 js 文件。如用户需要用到地图图表,可自行安装对应的地图文件包。

地图文件被分成了三个 Python 包,分别为:
全球国家地图: echarts-countries-pypkg (1.9MB)
中国省级地图: echarts-china-provinces-pypkg (730KB)

中国市级地图: echarts-china-cities-pypkg (3.8MB)

(1)pycharm直接在设置里面搜索安装这三个库

(2)pip安装

pip install echarts-countries-pypkg

pip install echarts-china-provinces-pypkg

pip install echarts-china-cities-pypkg

二、各种图表

1.柱状图/条形图——Bar

bar = pyecharts.Bar("全国各地最高最低气温", "2018-4-18", title_pos='right', title_color='blue', width=1400, height=700,background_color='white')
bar.add("最高气温", cities, highs, mark_point=['max'], legend_text_color='red', is_datazoom_show=True)
bar.add("最低气温", cities, lows, mark_line=['min'], legend_text_color='blue' )

bar.render('Bar-High-Low.html')

2、散点图——EffectScatter

es = pyecharts.EffectScatter("最低气温动态散点图", "2018-4-16", title_pos='right', title_color='blue', width=1400, height=700, background_color='white')
es.add("最低温度", range(0, len(cities)), lows, legend_pos='center', legend_text_color='blue',symbol_size=10, effect_period=3, effect_scale=3.5, symbol='pin',is_datazoom_show=True,is_label_show=True)

es.render("EffectScatter-low.html")

3、漏斗与——Funnel

fl = pyecharts.Funnel("最高气温漏斗图", "2018-40-16", title_pos='left', width=1400, height=700)
fl.add("最低气温", cities[:15], lows[:15], is_label_show=True, label_pos='inside', label_text_color='white')

fl.render("Funnel-low.html")

4、仪表盘——Guage

gu = pyecharts.Gauge("仪表盘图")
gu.add("指标", "达标", 80)

gu.render("Guage-eg.html")

5、地理坐标图——Geo

geo = pyecharts.Geo("最高气温地理坐标系图", '2018-4-16', title_color='#fff', title_pos='center', width=1200, height=600, background_color='#404a95')
geo.add("最高气温", cities, highs, is_visualmap=True, visual_range=[0, 40], visual_text_color='#fff', symbol_size=5, legend_pos='right',is_geo_effect_show=True)

geo.render("Geo-Low.html")

6、关系图——Graph(略)

7、折线/面积图——Line

line = pyecharts.Line("气温变化折线图", '2018-4-16', width=1200, height=600)
line.add("最高气温", cities, highs, mark_point=['average'], is_datazoom_show=True)
line.add("最低气温", cities, lows, mark_line=['average'], is_smooth=True)

line.render('Line-High-Low.html')

line = pyecharts.Line("气温变化折线图", '2018-4-16', width=1200, height=600)
line.add("最高气温", cities, highs, mark_point=['average'], is_datazoom_show=True, is_fill=True, line_opacity=0.2, area_opacity=0.4)
line.add("最低气温", cities, lows, mark_line=['average'], is_smooth=True, is_fill=True, area_color="#000", area_opacity=0.5)

line.render('Area-High-Low.html')

8、水滴球——Liquid

lq = pyecharts.Liquid("水滴球")
lq.add("Liquid", [0.8, 0.5, 0.2], is_liquid_outline_show=False, is_liquid_animation=True)

lq.render("LiQuid.html")

9、地图——Map

a_city = []
for i in cities:
a_city.append(i + '市')
map = pyecharts.Map("湖北最低气温", width=1200, height=600)
map.add("最低气温", a_city, lows, maptype='湖北', is_visualmap=True, visual_text_color='#000', visual_range= [-15, 20])

map.render("Map-low.html")

value = [95.1, 23.2, 43.3, 66.4, 88.5]

attr= ["China", "Canada", "Brazil", "Russia", "United States"]

map = Map("世界地图示例", width=1200, height=600)

map.add("", attr, value, maptype="world", is_visualmap=True, visual_text_color='#000')

map.render('Map-World.html')


10、平行坐标图——Parallel

parallel = pyecharts.Parallel("高低温度的平行坐标系图", '2018-4-16', width=1200, height=600)
parallel.config(cities[:20])
parallel.add("高低温", [highs[:20], lows[:20]], is_random=True)

parallel.render('Parallel-High-Low.html')

11、饼图——Pie

sun = 0
cloud = 0
lit_rain = 0
mit_rain = 0
sail = 0
shadom = 0
z_rain = 0
th_rain = 0
for i in types:
if i == '晴':
sun += 1
elif i == '多云':
cloud += 1
elif i == '小雨':
lit_rain += 1
elif i == '中雨':
mit_rain += 1
elif i == '阴':
shadom += 1
elif i == '阵雨':
z_rain += 1
elif i == '雷阵雨':
th_rain += 1
elif i == '扬沙':
sail += 1
pie = pyecharts.Pie("全国天气类型比例", '2018-4-16')
pie.add('天气类型', weather, [mit_rain, lit_rain, sail, sun, th_rain, cloud, shadom, z_rain], is_label_show=True)

pie.render('Pie-weather.html')

修改:

pie = pyecharts.Pie("全国天气类型比例", '2018-4-16', title_pos='center')
pie.add('天气类型', weather, [mit_rain, lit_rain, sail, sun, th_rain, cloud, shadom, z_rain], is_label_show=True, legend_pos='left', label_text_color=None, legend_orient='vertical', radius=[30, 75])

pie.render('Pie-weather.html')

pie镶嵌:

center -> list

饼图的中心(圆心)坐标,数组的第一项是横坐标,第二项是纵坐标,默认为 [50, 50]默认设置成百分比,设置成百分比时第一项是相对于容器宽度,第二项是相对于容器高度

rosetype -> str

是否展示成南丁格尔图,通过半径区分数据大小,有'radius'和'area'两种模式。默认为'radius'radius:扇区圆心角展现数据的百分比,半径展现数据的大小area:所有扇区圆心角相同,仅通过半径展现数据大小

pie = pyecharts.Pie("全国天气类型比例", '2018-4-16')
pie.add('', weather, [mit_rain, lit_rain, sail, sun, th_rain, cloud, shadom, z_rain], is_label_show=True, label_text_color=None, legend_orient='vertical', radius=[40, 50], center=[50, 50])
pie.add('', ['中雨', '小雨', '扬沙', '晴'], [lit_rain, mit_rain, sun, sail], radius=[10, 35], center=[50, 50], rosetype='area')

pie.render('Pie-weather.html')

至此,pyecharts的大多数图标的绘制我们都可以实现了,更多知识可以查看下面链接

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • 基于Python批量生成指定尺寸缩略图代码实例

    这篇文章主要介绍了基于Python批量生成指定尺寸缩略图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 最近我们商城上架的应用越来越丰富了.但在应用上传的过程中遇到这样的一个问题:每一个上架的应用需要配置一个应用封面图片,并且封面的图片大小有指定的范围:300*175.而 我们制作完的图片一般都会大于这个尺寸.所以每次手动调整大小,又让我产生了偷懒的想法,想法有了那就开始行动吧. 代码 import requests as req fr

  • python3.6、opencv安装环境搭建过程(图文教程)

    我需要使用tesseract-OCR的模块,vs的配置有点麻烦,所以采用py的环境,搭建. 1.在python.org网站下载python3.6版本 我下载的3.6.8的python的安装 选存放的路径和把配置环境变量选项勾上否则需要自己配置环境变量  遇 到这个页面点击一下disable path length limit 再点 close cmd或者power shell里面测试: py IDE的安装与py的配置 双击桌面图标 使用软件 安装opencv-python 在命令行中直接使用pi

  • python matplotlib如何给图中的点加标签

    这篇文章主要介绍了python matplotlib给图中的点加标签,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 在写论文用到matplotlib画散点图,想着如果能把每个点对应的ID打在点的旁边就好了,经过一番搜索,最后找到了方法. 首先是打点,先把所有的点画好,举例如下: p1 = ax.scatter(X[:,0], X[:,1], marker = '*', color = 'r', label='1', s=10) 再依次给每个点打

  • python制作图片缩略图

    缩略图 在很多时候我们都需要将图片按照同比例缩小有利于存储 但是一张张手动去改的话太麻烦了 今天我们就用python实现一个简单的将一个文件夹中的所有图片进行指定大小的调整 缩略前: 代码: import os import glob from PIL import Image def thumbnail_pic(path): #glob.glob(pathname),返回所有匹配的文件路径列表 a=glob.glob(r'./img/*.jpg') for x in a: name=os.pa

  • python如何制作缩略图

    本文实例为大家分享了python制作缩略图的具体代码,供大家参考,具体内容如下 import cv2 #导入opencv模块 from tkinter import * #导入tkinter模块 from tkinter import ttk #tkinter最新的主题部件 from PIL import Image #初始化模块 root = Tk() root.title('Pt') root.geometry('600x300') #查找图片路径,成功则显示图片 def searchPic

  • Python/Django后端使用PIL Image生成头像缩略图

    本文实例为大家分享了Python/Django后端使用PIL Image生成头像缩略图的具体代码,供大家参考,具体内容如下 import os from django.views.generic import View from myapp.models import User from PIL import Image def make_thumbnail(infile,thumbnail_dir): size = (156, 156) if not os.path.exists(thumbn

  • python使用pil生成缩略图的方法

    本文实例讲述了python使用pil生成缩略图的方法.分享给大家供大家参考.具体分析如下: 这段代码实现python通过pil生成缩略图的功能,会强行将图片大小修改成250x156 from PIL import Image img = Image.open('jb51.jpg') img = img.resize((250, 156), Image.ANTIALIAS) img.save('jb51_small.jpg') 希望本文所述对大家的Python程序设计有所帮助.

  • python生成指定尺寸缩略图的示例

    python生成指定尺寸的缩略图 复制代码 代码如下: def MakeThumb(path, sizes=(75, 32, 16)):    """    缩略图生成程序 by Neil Chen    sizes 参数传递要生成的尺寸,可以生成多种尺寸    """    base, ext = os.path.splitext(path)    try:        im = Image.open(path)    except IOEr

  • python的pyecharts绘制各种图表详细(附代码)

    环境:pyecharts库,echarts-countries-pypkg,echarts-china-provinces-pypkg,echarts-china-cities-pypkg 数据:2018年4月16号的全国各地最高最低和天气类型的数据--2018-4-16.json(爬虫爬的) 代码:天气数据爬虫代码,图表绘制代码 代码地址:https://github.com/goodloving/pyecharts.git(py文件) 一.公共属性 1.标题栏的属性:一般在实例化(初始化)类

  • Python可视化神器pyecharts绘制地理图表

    目录 地理图表 地理图表之热力图系列模板 人口流动趋势图(中国) 中国城市分段热力图 重庆省份微塑料分布热力图 中国城市连续热力图 中国城市热力动态图 中国城市散点热力图 地理图表 什么是地理图表?地理图表有什么作用?地理图表主要应用在那些领域? 其实这些问题看看下面的实例图形就已不攻自破了,地理图表一看首先就是地图,然后在地理图表里面展示数据,比如说热力图,趋势流动图,人口密集分布图,反正地理坐标相关的就可以运用在这个里面,其次图形支持全球地图,全球国家,中国,中国的所有的省份的地图,反正应有

  • Python使用pyecharts绘制世界地图,省级地图,城市地图实例详解

    目录 1.世界地图绘制演示 ① 世界地图数据准备 ② 世界地图生成 2.省份(河北省)地图绘制演示 ① 省份地图数据准备 ② 省份地图生成 3.城市(承德市)地图绘制演示 ① 城市地图数据准备 ② 城市地图生成 1.世界地图绘制演示 先给大家看下效果图哈. ① 世界地图数据准备 地图数据如下: 因为是世界地图,所以对标的国家,我设置了 2 组,里面的数据是随机生成的. # -*- coding:utf-8 -*- # 2022-2-14 # 作者:小蓝枣 # pyecharts地图 # 需要引用

  • python使用matplotlib绘制折线图的示例代码

    示例代码如下: #!/usr/bin/python #-*- coding: utf-8 -*- import matplotlib.pyplot as plt # figsize - 图像尺寸(figsize=(10,10)) # facecolor - 背景色(facecolor="blue") # dpi - 分辨率(dpi=72) fig = plt.figure(figsize=(10,10),facecolor="blue") #figsize默认为4,

  • Python通过Pygame绘制移动的矩形实例代码

    Pygame是一个多用于游戏开发的模块. 本文实例主要是在演示框里实现一个移动的矩形实例代码,完整代码如下: #moving rectangle project import pygame from pygame.locals import * pygame.init() screen = pygame.display.set_mode((600,500)) pygame.display.set_caption("Drawing Rectangles") pos_x = 300 pos

  • 使用Python轻松实现绘制词云图项目(附详细源码)

    目录 项目背景 项目实操 一.一般词云绘制 二.根据词频绘制词云 结 语 项目背景 虽然现在已经有很多现成的制作词云图的工具了,但一般存在以下几个问题: 问题一:工具太多,眼花缭乱,质量参差不齐,选择困难症: 问题二:大多词云工具或多或少有一些限制,自定义的空间有限: 问题三:有些工具甚至收费. 基于以上几个问题,觉得有必要写一篇Python绘制词云图的文章,因为实在太简单!没有任何编程基础的小白都能搞定的事,还找什么工具啊! OK,FINE.咱不废话,直接实操. 项目实操 一.一般词云绘制 制

  • Python使用plotly绘制数据图表的方法

    导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示. 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Excel处理压测数据并绘制数据可视化视图,但这样不能很方便的使用web页面进行数据展示.本文将介绍使用python-plotly模块来进行压测数据的绘制,并且生成静态html页面方便结果展示. Plotly简介 Plotly是一款使用JavaScript开发的制图工具,提供了与主流数据分析语言交互的API(如:Pyt

  • Python 如何实时向文件写入数据(附代码)

    目录 1:实时向csv文件写入数据 步骤1:创建文件并写入字段 步骤2:写入数据 2:实时向txt文件写入数据 再次向txt文件中写入数据 之前在做数据分析的过程中,需要对数据进行实时的写入,比如对新生成的数据写入之前已经生成的txt或csv文件中.现在想想其实很简单,所以做一个总结. 1:实时向csv文件写入数据 假设需要生成一张csv表,里面的字段对应一些数据,由于后续的过程中,不止一次写入数据,那么安全的做法是: 首先写入字段: 然后写入数据(否则字段也会每次被写入) 步骤1:创建文件并写

  • 详解如何基于Pyecharts绘制常见的直角坐标系图表

    目录 1.直方图 2.折线图 3.箱形图 4.散点图 5.带涟漪效果散点图 6.k线图 7.热力图 8.象型图 9.层叠图 总结 1.直方图 # -*-coding:utf-8 -*- # @Time : 21:02 # @Author: 黄荣津 # @File : 1.直方图.py # @Software: PyCharm from pyecharts.charts import * from pyecharts.components import Table from pyecharts i

  • python基于turtle绘制几何图形

    1. 什么是turtle turtle模拟了人在画布前画画的过程:给你一支笔(Pen), 下笔(pendown),移动画笔绘制你的图形,然后填色等等.turtle提供了几种简单的命令,通过组合他们的顺序,只要够耐心,turtle可以画出令人惊叹的作品,很适合用来引导小朋友学习编程. 先来感受下作品: 2. turtle例子 我们通过一个简单的例子来了解turtle的基本操作 import turtle # screen 画布属性设置 canvas = turtle.Screen() canvas

随机推荐