python数据库操作mysql:pymysql、sqlalchemy常见用法详解

本文实例讲述了python数据库操作mysql:pymysql、sqlalchemy常见用法。分享给大家供大家参考,具体如下:

相关内容:

  • 使用pymysql直接操作mysql

    • 创建表
    • 查看表
    • 修改表
    • 删除表
    • 插入数据
    • 查看数据
    • 修改数据
    • 删除数据
  • 使用sqlmary操作mysql
    • 创建表
    • 查看表
    • 修改表
    • 删除表
    • 插入数据
    • 查看数据
    • 修改数据
    • 删除数据
  • 首发时间:2018-02-24 23:59
  • 修改:
    • 2018-06-15,发现自己关于pymysql写了对于数据的操作示例,但没有写表结构的示例,于是添加上

直接操作mysql--pymysql:

直接操作mysql意思是利用python实现类似命令行模式下的mysql交互。

前提:

  • 首先需要安装python与mysql交互的库【PyMySQL 是在 Python3 版本中用于连接 MySQL 服务器的一个库】:

    • 安装模块:pymysql:

      pip3 install pymysql

      或者在Pycharm中安装

使用:

  • 首先导入模块:import pymysql
  • 连接数据库 :数据库连接对象 = pymysql.connect("host="localhost",port=3306,user='root',passwd='123456',db='python_test') 【如果需要支持中文,则加上charset=”utf8”】
  • 创建游标【游标用于执行sql语句和管理查询到的结果】 :游标对象 = 数据库连接对象.cursor()
  • 执行sql语句 :游标对象.execute(SQL语句) ,返回值是受影响行数  【execute可以执行所有的sql语句,不论是表相关的,还是数据相关的。】
    • 由于默认开始事务,如果涉及修改、插入,则需要提交:连接对象.commit() ;以及撤销修改、插入的回滚:连接对象.rollback()
    • executemany是同时执行多条sql语句【以多组参数的格式,executemany(self,query,args)】:
  • 获取结果:
    • 获取一条结果:data = 游标对象.fetchone()

    • 获取全部结果:data=游标对象.fetchall()
    • 获取指定数量结果:data=游标对象.fetmany(x)
    • 获取结果后,就会将对应的结果删掉,比如fetchone是获取一条,那么这一条就会从原来的结果中删除
    • 游标对象.rowcount()可以获得执行sql语句后受影响的行数
  • 关闭游标: 游标对象.close()
  • 关闭数据库连接:数据库连接对象.close()

示例:

1.创建连接:

import pymysql

#创建连接
conn=pymysql.connect(host="localhost",port=3306,user="root",passwd="123456",db="python_test")
#创建游标
cursor=conn.cursor()
#..............操作过程
#关闭游标
cursor.close()
#关闭连接
conn.close()

2.执行创建表:

import pymysql

conn=pymysql.connect(host="localhost",port=3306,user="root",password="123456",db="it",charset="utf8")

cursor=conn.cursor()

sql="""
create table user(
id int PRIMARY KEY auto_increment,
username VARCHAR(20),
password VARCHAR(20),
address VARCHAR(35)
)
"""
cursor.execute(sql)

conn.commit()
cursor.close()
conn.close()

3.执行查询:

import pymysql

#创建连接
conn=pymysql.connect(host="localhost",port=3306,user="root",passwd="123456",db="python_test",charset="utf8")
#创建游标
cursor=conn.cursor()

cursor.execute("select * from student;")
print(cursor.fetchone())#获取一条
print(cursor.fetchmany(2))#获取两条
print(cursor.fetchall())#获取结果集合中的全部

#关闭游标
cursor.close()
#关闭连接
conn.close()

4.执行插入、修改、删除:

import pymysql

#创建连接
conn=pymysql.connect(host="localhost",port=3306,user="root",password="123456",db="python_test",charset="utf8")
#创建游标
cursor=conn.cursor()

print("-----------插入----------------")
cursor.execute("insert into student values ('nazha',2000,'男');")
cursor.execute("select * from student;")
print(cursor.fetchall())
print("-----------插入----------------")
#cursor.executemany(self,query,args)
cursor.executemany("insert into student value(%s,%s,%s);",[('zhangsan',18,'男'),('lisi',18,'男')])
cursor.execute("select * from student;")
print(cursor.fetchall())
print("-----------修改----------------")
cursor.execute("update student set name = 'zhangsan1' where name = 'zhangsan';")
cursor.execute("select * from student;")
print(cursor.fetchall())
print("----------删除-----------------")
cursor.execute("delete from student where name = 'lisi';")
cursor.execute("select * from student;")
print(cursor.fetchall())
print("---------------------------")

#需要提交才能插入、成功修改、删除
conn.commit()
#关闭游标
cursor.close()
#关闭连接
conn.close()

结果:

(('lilei', 18, '男'), ('hanmeimei', 18, '女'), ('huluwa', 18, '男'), ('sunwukong', 18, '男'), ('baigujing', 3000, '女'), ('nazha', 2000, '男'))
---------------------------
(('lilei', 18, '男'), ('hanmeimei', 18, '女'), ('huluwa', 18, '男'), ('sunwukong', 18, '男'), ('baigujing', 3000, '女'), ('nazha', 2000, '男'), ('zhangsan', 18, '男'), ('lisi', 18, '男'))
---------------------------
(('lilei', 18, '男'), ('hanmeimei', 18, '女'), ('huluwa', 18, '男'), ('sunwukong', 18, '男'), ('baigujing', 3000, '女'), ('nazha', 2000, '男'), ('zhangsan1', 18, '男'), ('lisi', 18, '男'))
---------------------------
(('lilei', 18, '男'), ('hanmeimei', 18, '女'), ('huluwa', 18, '男'), ('sunwukong', 18, '男'), ('baigujing', 3000, '女'), ('nazha', 2000, '男'), ('zhangsan1', 18, '男'))
---------------------------

5.设置支持中文【创建连接时添加charset=”utf8”】:

import pymysql

#创建连接
# conn=pymysql.connect(host="localhost",port=3306,user='root',passwd='123456',db='python_test')
conn=pymysql.connect(host="localhost",port=3306,user='root',passwd='123456',db='python_test',charset="utf8")

#创建游标
cursor = conn.cursor()

effect_row= cursor.execute("select * from student;")

print("执行成功,受影响行数:",effect_row)
print(cursor.fetchall())

conn.commit()

cursor.close()
conn.close()

添加前:

添加后:


使用sqlalchemy操作mysql:

介绍:

  • ORM 将数据库中的表与面向对象语言中的类建立了一种对应关系,【ORM可以说是参照映射来处理数据的模型,比如说:需要创建一个表,可以定义一个类,而这个类存在与表相映射的属性,那么可以通过操作这个类来创建一个表】
  • sqlmary是一个mysql的ORM

前提:

    • 安装模块:pip3 install sqlalchemy

使用:

  • 导入模块:

    • 导入连接数据库模块:from sqlalchemy import create_engine
    • 如果需要创建新表,则需要导入表结构定义模块:from sqlalchemy.ext.declarative import declarative_base
    • 导入其他相关模块,主要是映射的类,如字段映射为Column,如数据类型int映射为Integer,如索引映射为Index,需要什么导入什么:from sqlalchemy import Column,Integer,String
    • 映射关系:
      数据库中 映射 模块【如果可以从多个模块处导入,用 | 分隔】【方式太多,可能有漏,但不影响导入】
      Table from sqlalchemy import Table
      int Integer from sqlalchemy.types import Integer
      索引 Index from sqlalchemy import Index
           
      字段、列 Column from sqlalchemy import Column
      varchar VARCHAR、String from sqlalchemy.types import String    |   from sqlalchemy import String
      外键 ForeignKey

      from sqlalchemy import ForeignKey

           
           
  • 连接数据库:连接对象=create_engine('数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名',编码格式,echo)
    • sqlalchemy支持多种API操作模式,可以使用不同的模式来连接操作数据库:'数据库类型+数据库驱动名称://用户名:口令@机器地址:端口号/数据库名'

      • 比如pymsql【py3常用】:mysql+pymysql://<username>:<password>@<host>/<dbname>[?<options>
    • 其他参数:
      • echo是否显示ORM转成实际sql语句的过程,echo=True为显
      • encoding为连接时使用的字符集

操作:

基本操作:

    • 创建新表

      • 方法一: 使用declarative

        • 1.导入模块from sqlalchemy.ext.declarative import declarative_base
        • 2.根据需要的元素来导入模块from sqlalchemy import Column
          • 导入需要的数据类型【注:数据类型在sqlalchemy中也有指向,所以也可以from sqlalchemy import String,Integer,Char】:from sqlalchemy.types import *
        • 3.创建连接,
        • 3.使用declarative_base来获得一个类对象,此处我定义该对象为Base
        • 定义一个类,继承declarative_base生成的类对象Base
          • 使用__tablename__来定义表名
          • 使用 列名 = Column(数据类型,其他列属性…)等类似格式来定义字段
            • nullable=False 代表这一列不可以为空,index=True 表示在该列创建索
        • 创建表:Base.metadata.create_all(engine)

          from sqlalchemy import create_engine#负责导入连接数据库的对象
          from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
          from sqlalchemy import Column #负责导入列
          from sqlalchemy.types import *#负责导入列类型
          
          #数据库连接
          engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8',echo=True)
          #方式一:
          Base = declarative_base()
          
          class User(Base):
            __tablename__ = 'user'#表名
            id = Column(Integer,primary_key=True)
            name = Column(String(32))
            password = Column(String(64))
          
          Base.metadata.create_all(engine)

      • 方法二:使用Table

        • 1.导入模块: from sqlalchemy import Table
        • 2.连接数据库:engine=create_engine(….)
        • 3.获取meta类,metadata=MetaData(engine)
        • 4.创建Table对象( 比如:t=Table("group" ,metadata,Column("id",Integer,primary_key=True),Column("group_name",String(32)))  )
        • 5.创建表:metadata.create_all()

          from sqlalchemy import create_engine
          from sqlalchemy import Table
          from sqlalchemy import MetaData
          from sqlalchemy import Column
          from sqlalchemy.types import *
          from sqlalchemy.ext.declarative import declarative_base
          
          ####下面的注释部分可以与上面一句的未注释的替换
          engine=create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8',echo=True)
          metadata=MetaData(engine) ###
          # Base=declarative_base()
          
          t=Table(
          "group" ,metadata,#表名
          # "group",Base.metadata,
          Column("id",Integer,primary_key=True),
          Column("group_name",String(32))
          )
          
          metadata.create_all()
          # Base.metadata.create_all(engine)

    • 查看表:

      • db_table=Base.metadata.tables#仅有当次运行中继承了Base而创建的新表
      • db_tables=engine.table_names()#仅有表名
    • 删除表:Base.metadata.drop_all(engine)
    • 修改表:
      • 直接修改表所对应的类结构是无法修改成功的,
      • 如果需要修改在程序中自定义的表的结构,那么需要手动修改,手动的方式有很多,比如直接engine.execute(sql语句)。。。。
    • 插入 数据【这里仅针对使用declarative_base创建的表,对于不是程序中才创建的,可以自己使用declarative_base建一个类来映射之前的表,只要映射一致,就能插入数据】

      • 1.连接数据库:engine=create_engine(….)
      • 1.导入模块:from sqlalchemy.orm import sessionmaker
      • 2.获取session_class类:Session_class=sessionmaker(bind=engine)
      • 3.获取session对象:s=Session_class()
      • 4.使用s来添加:
        • s.add()
        • s.add_all()
      • 5.提交数据: s.commit()

        from sqlalchemy import create_engine#负责导入连接数据库的对象
        from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
        from sqlalchemy import Column #负责导入列
        from sqlalchemy.types import *#负责导入列类型
        
        #数据库连接
        engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8',echo=True)
        Base = declarative_base()
        class User(Base):
          __tablename__ = 'user'#表名
          id = Column(Integer,primary_key=True)
          name = Column(String(32))
          password = Column(String(64))
          group = Column(Integer)
        
        Base.metadata.create_all(engine)
        
        from sqlalchemy.orm import sessionmaker
        obj1=User(name='lisi',password='123456',group=1)
        
        Session=sessionmaker(bind=engine)
        s=Session()
        s.add(obj1)#
        
        users=[User(name='wangwu',password='123456',group=1),
            User(name='zhaoliu', password='123456', group=1),
            User(name='sunqi', password='123456', group=1)
            ]
        s.add_all(users)#
        
        s.commit()

    • 查找 数据

      • 同样适用sessionmaker来查找,与插入相同,需要创建session_class对象(我定义为s)
      • 使用s来查找:
        • s.query(表对应类)是相当于select对应表,后面可以跟first()、all()等来获取结果,也可以加filter、filter_by等来筛选结果
        • 获取全部 : s.query(表对应类).all() 【返回的是一个结果列表】
        • 查找指定: s.query(表对应类).filter(表对应类.xxx==xxxx)【filter获取的是结果集,需要使用all(),first()等方法来获取结果】
        • 查找指定: s.query(表对应类).filter_by(xxx=xxxx)
        • 附:虽然返回值是一个结果集,但这个集合是一个类对象,如果想查看内容,需要在表对应的类中增加__repr__方法。
        • 多个筛选条件使用“,”隔开
        • 常见可用筛选条件【User是一个表对应的类】:
          使用filter,filter_by时:

          User.name=='lisi'

          User.name.like(“lisi%”))

          User.name != 'lisi'

          User.name.any()
          or_(筛选条件) 【代表里面的多个筛选条件以or组合,需要导入:from sqlalchemy import or_】
          and_(筛选条件) 【代表里面的多个筛选条件以and组合,需要导入:from sqlalchemy import and_】【默认是and】
          in_([筛选条件])  【使用比如User.name.in_(['xiaxia', 'lilei', 'lover'])】
          使用all时,以下是放在query里面的:
          User.name  [这相当于不使用where的select name from 表]
           
           

        • 连接查询使用:s.query(表对应类).join(表对应类.xxx==xxxx)
        • 还有group_by,order_by等用法这里不做讲解[什么时候有空再补吧!]

          from sqlalchemy import create_engine#负责导入连接数据库的对象
          from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
          from sqlalchemy import Column #负责导入列
          from sqlalchemy.types import *#负责导入列类型
          
          #数据库连接
          engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8')
          Base = declarative_base()
          class User(Base):
            __tablename__ = 'user'#表名
            id = Column(Integer,primary_key=True)
            name = Column(String(32))
            password = Column(String(64))
            group = Column(Integer)
          
            def __repr__(self):
              return "<id:%s name:%s group:%s>"%(self.id,self.name,self.group)
          Base.metadata.create_all(engine)
          
          from sqlalchemy.orm import sessionmaker
          obj1=User(name='lisi',password='123456',group=1)
          
          Session=sessionmaker(bind=engine)
          s=Session()
          
          a=s.query(User).all()
          a2=s.query(User).filter(User.name=='lisi').first()
          a3=s.query(User).filter_by(name='lisi').first()
          
          print(a)
          print(a2)
          print(a3)
    • 修改 数据:

      • 修改数据的基础是先查找到数据,查找:row=s.query(X).filter(X.xxx=xxx).first()
      • 使用赋值语句修改 :row.xxx=xxxx

        from sqlalchemy import create_engine#负责导入连接数据库的对象
        from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
        from sqlalchemy import Column #负责导入列
        from sqlalchemy.types import *#负责导入列类型
        
        #数据库连接
        engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8')
        Base = declarative_base()
        class User(Base):
          __tablename__ = 'user'#表名
          id = Column(Integer,primary_key=True)
          name = Column(String(32))
          password = Column(String(64))
          group = Column(Integer)
        
          def __repr__(self):
            return "<id:%s name:%s group:%s>"%(self.id,self.name,self.group)
        Base.metadata.create_all(engine)
        
        from sqlalchemy.orm import sessionmaker
        obj1=User(name='lisi',password='123456',group=1)
        
        Session=sessionmaker(bind=engine)
        s=Session()
        
        row=s.query(User).filter(User.name=='lisi').first()
        row.name='lisi2'
        s.commit()

    • 删除 数据:

      • 删除数据的基础是先查找到数据,查找:row=s.query(X).filter(X.xxx=xxx)
      • 使用delete删除:row.delete()

        # coding: utf-8
        from sqlalchemy import create_engine#负责导入连接数据库的对象
        from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
        from sqlalchemy import Column #负责导入列
        from sqlalchemy.types import *#负责导入列类型
        
        #数据库连接
        engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8')
        Base = declarative_base()
        class User(Base):
          __tablename__ = 'user'#表名
          id = Column(Integer,primary_key=True)
          name = Column(String(32))
          password = Column(String(64))
          group = Column(Integer)
          def __repr__(self):
            return "<id:%s name:%s group:%s>"%(self.id,self.name,self.group)
        
        Base.metadata.create_all(engine)
        
        from sqlalchemy.orm import sessionmaker
        obj1=User(name='lisi',password='123456',group=1)
        
        Session=sessionmaker(bind=engine)
        s=Session()
        
        a3=s.query(User).filter_by(name='lisi1')
        a3.delete()
        s.commit()

  • 外键相关:

    • 外键使用foregin_key创建
    • 类中的relationship的作用:帮助ORM获知他们的外键关系,以便ORM使用外键获取相关数据
      • relationship中的backref的用途:relationship使得可以在一个表中定义的relationshop能被两个表使用,另一个表使用backref来获取相关信息
      • relationship中的foreign_keys的用途:当有多个relationship时,为了避免ORM混淆多个relationship,特别的标注哪个外键是哪个relationship
      • relationship中的secondary的用途:在多对多的关系中,填入的值是中间表,维持两边表关系。
    • 一对一的外键关系:
      • 1.导入模块:from sqlalchemy import Foreign_key
      • 2.建立外键(如:group = Column(Integer,ForeignKey("group.id")),建立关系(如:group_relation=relationship('Group',backref="g_users")
      • 3.插入数据
      • 4.查询到一条数据:如row=s.query(User).filter(User.name=='lisi').first()
      • 5.尝试A表调用关系来获取B(row.group_relation.group_name),B使用backref来获取A的数据(row2.g_users)
      • 下面的实例大概就是“一个开发人员对应一个开发组的关系”
    #负责导入连接数据库的对象
    from sqlalchemy import create_engine
    from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
    from sqlalchemy import Column,ForeignKey #负责导入列
    from sqlalchemy.types import *#负责导入列类型
    from sqlalchemy.orm import relationship
    
    #数据库连接
    engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8')
    Base = declarative_base()
    
    class Group(Base):
      __tablename__="group"
      id=Column(Integer,primary_key=True)
      group_name=Column(String(32),nullable=False)
    
      def __repr__(self):
        return "<id:%s group_name:%s>"%(self.id,self.group_name)
    
    class User(Base):
      __tablename__ = 'user'#表名
      id = Column(Integer,primary_key=True)
      name = Column(String(32),nullable=False)
      password = Column(String(64),nullable=False)
      group = Column(Integer,ForeignKey("group.id"))#这里创建外键
    
      group_relation=relationship('Group',backref="g_users")#为ORM指明关系,方便ORM处理,第一个是对应的类
      def __repr__(self):
        return "<id:%s name:%s>"%(self.id,self.name)
    Base.metadata.create_all(engine)
    
    from sqlalchemy.orm import sessionmaker
    # group1=Group(group_name='python')
    # group2=Group(group_name='linux')
    # group3=Group(group_name='AI')
    # user1=User(name='lisi',password='123456',group=1)
    # user2=User(name='zhangsan',password='123456',group=2)
    # user3=User(name='wangwu',password='123456',group=3)
    # user4=User(name='lilei',password='123456',group=3)
    
    Session=sessionmaker(bind=engine)
    s=Session()
    # s.add_all([group1,group2,group3,user1,user2,user3,user4])
    # s.commit()
    
    # row=s.query(User).filter(User.name=='lisi').first()
    row=s.query(User).first()
    print(row.group_relation.group_name)#这里User通过关系来获取Group的数据
    row2=s.query(Group).first()
    print(row2)
    print(row2.g_users)#这里Group通过relationship的backref来获取User的数据

    • 一对多关系,外键关联

      • 以一个老师能做一个班的班主任此外还能做另一个班的副班主任为例【即一个老师能对应多个班级】
      • 一对多关系的创建的核心是relationship中的foreign_keys
      • 附:当你建表成功而插入数据失败时,可以尝试先删除掉数据表,有时候因为外键依赖会导致插入失败

        #负责导入连接数据库的对象
        from sqlalchemy import create_engine
        from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
        from sqlalchemy import Column,ForeignKey #负责导入列
        from sqlalchemy.types import *#负责导入列类型
        from sqlalchemy.orm import relationship
        
        #数据库连接
        engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8')
        Base = declarative_base()
        
        class Grade(Base):
          __tablename__="grade"
          id=Column(Integer,primary_key=True)
          grade_name=Column(String(32),nullable=False)
        
          def __repr__(self):
            return "<id:%s group_name:%s>"%(self.id,self.grade_name)
        
        class Teacher(Base):
          __tablename__ = 'teacher'#表名
          id = Column(Integer,primary_key=True)
          name = Column(String(32),nullable=False)
          primary_grade = Column(Integer,ForeignKey("grade.id"))
          second_grade = Column(Integer,ForeignKey("grade.id"))
        
          primary_grade_relation=relationship('Grade',backref="first_teacher",foreign_keys=[primary_grade])
          second_grade_relation=relationship('Grade',backref="second_teacher",foreign_keys=[second_grade])
          def __repr__(self):
            return "<id:%s name:%s>"%(self.id,self.name)
        
        Base.metadata.create_all(engine)
        
        from sqlalchemy.orm import sessionmaker
        # grade1=Grade(grade_name='python')
        # grade2=Grade(grade_name='linux')
        # grade3=Grade(grade_name='AI')
        # grade4=Grade(grade_name='Java')
        # t1=Teacher(name='lisi',primary_grade=1,second_grade=2)
        # t2=Teacher(name='zhangsan',primary_grade=2,second_grade=1)
        # t3=Teacher(name='wangwu',primary_grade=4,second_grade=3)
        # t4=Teacher(name='lilei',primary_grade_relation=grade3,second_grade=4)
        #这里外键相关的比如primary_grade=x可以使用primary_grade_relation=对象来代替,
        # 会根据对象来转成对应id,不过问题是不知道grade3的准确id,因为可能创建顺序不一致
        
        Session=sessionmaker(bind=engine)
        s=Session()
        # s.add_all([grade1,grade2,grade3,grade4])
        # s.add_all([t1,t2,t3,t4])
        # s.commit()
        
        row=s.query(Teacher).filter(Teacher.name=='lisi').first()
        
        print(row.name,row.primary_grade_relation.grade_name)#这里Teacher通过关系来获取Grade的数据
        print(row.name,row.second_grade_relation.grade_name)
        row2=s.query(Grade).first()
        print(row2.grade_name,row2.first_teacher)#这里Grade通过relationship的backref来获取Teacher的数据
        print(row2.grade_name,row2.second_teacher)

    • 多对多外键关联

      • 以选课中一门课能有多名学生,一个学生可以选多门课为示例:
      • 其中relationship中的secondary的值是中间表,负责维持中间表与另外两表的关系,创建多对多的核心是secondary

        #负责导入连接数据库的对象
        from sqlalchemy import create_engine
        from sqlalchemy.ext.declarative import declarative_base#负责导入创建表的api
        from sqlalchemy import Column,ForeignKey #负责导入列
        from sqlalchemy.types import *#负责导入列类型
        from sqlalchemy.orm import relationship
        
        #数据库连接
        engine = create_engine("mysql+pymysql://root:123456@localhost/python_test",encoding ='utf-8')
        Base = declarative_base()
        
        class SelectInfo(Base):
          __tablename__="selectClassInfo"
          id=Column(Integer,primary_key=True)
          sid=Column(Integer,ForeignKey("student.id"))
          cid=Column(Integer,ForeignKey("course.id"))
        
        """使用declarative_base和Table 创建表时,secondary的填写不一样
        selectInfo2=Table(
        'selectClassInfo',Base.metadata,
        Column('sid',Integer,ForeignKey('student.id'))
        Column('cid',Integer,ForeignKey('student.id'))
        )
        """
        
        class Student(Base):
          __tablename__="student"
          id=Column(Integer,primary_key=True)
          name=Column(String(32),nullable=False)
        
          def __repr__(self):
            return "<id:%s name:%s>"%(self.id,self.name)
        
        class Course(Base):
          __tablename__ = 'course'
          id = Column(Integer,primary_key=True)
          name = Column(String(32),nullable=False)
        
          student_relation=relationship('Student',secondary="selectClassInfo",backref="courses")
          # student_relation=relationship('Student',secondary=selectClassInfo2,backref="courses")
          # #如果使用Table来创建中间表,上面是这样填的
        
          def __repr__(self):
            return "<id:%s name:%s>"%(self.id,self.name)
        
        Base.metadata.create_all(engine)
        
        from sqlalchemy.orm import sessionmaker
        #
        # s1=Student(name='lisi')
        # s2=Student(name='zhangsan')
        # s3=Student(name='wangwu')
        # s4=Student(name='lilei')
        # c1=Course(name='python',student_relation=[s1,s2])
        # c2=Course(name='linux',student_relation=[s3])
        # c3=Course(name='AI',student_relation=[s3,s4])
        # c4=Course(name='Java')
        # c4.student_relation=[s1,s2,s3,s4]##在一边增加关系之后,在secondary中会加入两边的数据
        #
        #
        #
        Session=sessionmaker(bind=engine)
        s=Session()
        # s.add_all([s1,s2,s3,s4,c1,c2,c3,c4])
        # s.commit()
        
        row=s.query(Course).filter(Course.id=='4').first()
        
        print(row.name,row.student_relation)#这里Course通过关系来获取Student的数据
        row2=s.query(Student).filter(Student.id=="3").first()
        print(row2.name,row2.courses)#这里Student通过relationship的backref来获取Course的数据

补充说明:

1.engine 可以直接运行sql语句,方式是engine.execute(),返回值是结果集,可以使用fetchall等方法来获取结果

2.其实创建表还有很多方法,可以使用各种对象来创建【比如在上面Table方式中也可以使用t来create(engine)】,但建议使用方式一

3.同样的,不单创建表有各种方法,查看表,删除表等也有多种操作方式,也是因为可以使用多种对象来操作

4.session也可以直接运行sql语句: session.execute()

附上sessionmake API官方文档:http://docs.sqlalchemy.org/en/latest/orm/session_api.html里面详尽而简单的讲解了用法

以及一个第三方辅助文档:https://www.pythonsheets.com/notes/python-sqlalchemy.html 里面有不少关于sqlalchemy的用法例子

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python常见数据库操作技巧汇总》、《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python3.6使用pymysql连接Mysql数据库

    python3.6使用pymysql连接Mysql数据库及简单的增删改查操作,供大家参考,具体内容如下 折腾好半天的数据库连接,由于之前未安装pip ,而且自己用的Python 版本为3.6. 只能用 pymysql 来连接数据库,(如果有和我一样未安装 pip 的朋友请 点这里windows下python安装pip简易教程),下边简单介绍一下连接的过程,以及简单的增删改查操作. 1.通过pip 安装pymysql 进入 cmd  输入  pip install pymysql  回车等待安装完

  • Python使用Flask-SQLAlchemy连接数据库操作示例

    本文实例讲述了Python使用Flask-SQLAlchemy连接数据库操作.分享给大家供大家参考,具体如下: 需要安装flask pip install flask 安装Mysql-Python (这个是py的mysql驱动,这个在官方没有win的支持,只有第三方才有py2.7的whl) pip install MySQL_python-1.2.5-cp27-none-win_amd64.whl 注:上述whl文件也可点击此处链接下载到本地安装:https://www.lfd.uci.edu/

  • Python编程实战之Oracle数据库操作示例

    本文实例讲述了Python编程实战之Oracle数据库操作.分享给大家供大家参考,具体如下: 1. 要想使Python可以操作Oracle数据库,首先需要安装cx_Oracle包,可以通过下面的地址来获取安装包 http://cx-oracle.sourceforge.net/ 2. 另外还需要oracle的一些类库,此时需要在运行python的机器上安装Oracle Instant Client软件包,可以通过下面地址获得 http://www.oracle.com/technetwork/d

  • Python的Flask框架中使用Flask-SQLAlchemy管理数据库的教程

    使用Flask-SQLAlchemy管理数据库 Flask-SQLAlchemy是一个Flask扩展,它简化了在Flask应用程序中对SQLAlchemy的使用.SQLAlchemy是一个强大的关系数据库框架,支持一些数据库后端.提供高级的ORM和底层访问数据库的本地SQL功能. 和其他扩展一样,通过pip安装Flask-SQLAlchemy: (venv) $ pip install flask-sqlalchemy 在Flask-SQLAlchemy,数据库被指定为URL.表格列出三个最受欢

  • Python 3.x 连接数据库示例(pymysql 方式)

    由于 MySQLdb 模块还不支持 Python3.x,所以 Python3.x 如果想连接MySQL需要安装 pymysql 模块. pymysql 模块可以通过 pip 安装.但如果你使用的是 pycharm IDE,则可以使用 project python 安装第三方模块. [File] >> [settings] >> [Project: python] >> [Project Interpreter] >> [Install按钮] 由于Python

  • Python MySQL数据库连接池组件pymysqlpool详解

    引言 pymysqlpool (本地下载)是数据库工具包中新成员,目的是能提供一个实用的数据库连接池中间件,从而避免在应用中频繁地创建和释放数据库连接资源. 功能 连接池本身是线程安全的,可在多线程环境下使用,不必担心连接资源被多个线程共享的问题: 提供尽可能紧凑的接口用于数据库操作: 连接池的管理位于包内完成,客户端可以通过接口获取池中的连接资源(返回 pymysql.Connection): 将最大程度地与 dataobj 等兼容,便于使用: 连接池本身具备动态增加连接数的功能,即 max_

  • Python的Django框架中使用SQLAlchemy操作数据库的教程

    零.SQLAlchemy是什么? SQLAlchemy的官网上写着它的介绍文字: SQLAlchemy is the Python SQL toolkit and Object Relational Mapper that gives application developers the full power and flexibility of SQL. SQLAlchemy 是一个非常强大的ORM和数据库工具,但是它庞大的文档和复杂的功能总是让很 多人望而生畏.而Django的ORM相对来说

  • Python使用sqlalchemy模块连接数据库操作示例

    本文实例讲述了Python使用sqlalchemy模块连接数据库操作.分享给大家供大家参考,具体如下: 安装: pip install sqlalchemy # 安装数据库驱动: pip install pymysql pip install cx_oracle 举例:(在url后面加入?charset=utf8可以防止乱码) from sqlalchemy import create_engine engine=create_engine('mysql+pymysql://username:p

  • Python使用pyodbc访问数据库操作方法详解

    本文实例讲述了Python使用pyodbc访问数据库操作方法. 数据库连接 数据库连接网上大致有两种方法,一种是使用pyodbc,另一种是使用win32com.client,测试了很多遍,最终只有pyodbc成功,而且比较好用,所以这里只介绍这种方法 工具库安装 在此基础上安装pyodbc工具库,在cmd窗口执行如下语句安装 pip install pyodbc 如果安装了anaconda也可以使用conda install pyodbc 分享给大家供大家参考,具体如下: 检验是否可以正常连接数

  • Python实现的连接mssql数据库操作示例

    本文实例讲述了Python实现的连接mssql数据库操作.分享给大家供大家参考,具体如下: 1. 目标数据sql2008 R2 ComPrject=>TestModel 2. 安装python 连接mssql 模块 运行 pip install pymssql-2.2.0.dev0-cp36-cp36m-win_amd64.whl 运行完毕 查看是否成功 pip -m  list 3. 编写python 代码 import time import pymssql #import decimal

  • Python使用pymysql从MySQL数据库中读出数据的方法

    python3.x已经不支持mysqldb了,支持的是pymysql 使用pandas读取MySQL数据时,使用sqlalchemy,出现No module named 'MySQLdb'错误. 安装:打开Windows PowerShell,输入pip3 install PyMySQL即可 import pymysql.cursors import pymysql import pandas as pd #连接配置信息 config = { 'host':'127.0.0.1', 'port'

  • Python 数据库操作 SQLAlchemy的示例代码

    程序在运行过程中所有的的数据都存储在内存 (RAM) 中,「RAM 是易失性存储器,系统掉电后 RAM 中的所有数据将全部丢失」.在大多数情况下我们希望程序运行中产生的数据能够长久的保存,此时我们就需要将数据保存到磁盘上,无论是保存到本地磁盘,还是通过网络保存到服务器上,最终都会将数据写入磁盘文件.将数据保存在磁盘中我们需要面对一个数据格式的问题,此时就需要引入数据库操作. 数据库是专门用于数据的集中存储和查询的软件,它便于程序保存和读取数据,且能够通过特定的条件查询指定的数据. Python

随机推荐