简单的Python人脸识别系统

案例一 导入图片

思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口

# 1.导入库
import cv2

# 2.加载图片
img = cv2.imread('a.png')

# 3.创建窗口
cv2.namedWindow('window 1 haha')

# 4.显示图片
cv2.imshow('window 1',img)

# 5.暂停窗口
cv2.waitKey(0)

# 6.关闭窗口
cv2.destroyAllWindows()

案例二 在图片上添加人脸识别

思路: 1.导入库 2.加载图片 3.加载人脸模型 4.调整图片灰度 5.检查人脸 6.标记人脸 7.创建窗口 8.显示图片 9.暂停窗口 10.关闭窗口

# 1.导入库
import cv2

# 2.加载图片
img = cv2.imread('a.png')

# 3.加载人脸模型,opencv官网下载
face = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# 4.调整图片灰度:没必要识别颜色,灰度可以提高性能
gray = cv2.cvtColor(img,cv2.COLOR_RGB2GRAY)

# 5.检查人脸
faces = face.detectMultiScale(gray)

# 6.标记人脸for (x,y,w,h) in faces:
  # 里面有4个参数 1.写图片 2.坐标原点 3.识别大小 4.颜色 5.线宽
  cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),4)

# 7.创建窗口
  cv2.namedWindow('window 1 haha')

# 8.显示图片
cv2.imshow('window 1', img)

# 9.暂停窗口
cv2.waitKey(0)

# 10.关闭窗口
cv2.destroyAllWindows()

案例三 调用摄像头

思路: 1.导入库 2.打开摄像头 3.获取摄像头实时画面 4.释放资源 5.关闭窗口

# 1.导入库
import cv2

# 2.打开摄像头
capture = cv2.VideoCapture(0)

# 3.获取摄像头实时画面
cv2.namedWindow('camera')
while True:
  #3.1 获取摄像头的帧画面
  ret,frame = capture.read()
  #3.2 显示图片(渲染画面)
  cv2.imshow('window 1',frame)
  #3.3 暂停窗口
  if cv2.waitKey(5) & 0xFF == ord('q'):
    break

# 4.释放资源
capture.release()

# 5.关闭窗口
cv2.destroyAllWindows()

案例四 摄像头识别人脸

思路: 1.导入库 2.加载人脸模型 3.打开摄像头 4.创建窗口 5.获取摄像头实时画面 6.释放资源 7.关闭窗口

# 1.导入库
import cv2

# 2.加载人脸模型
face = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

# 3.打开摄像头
capture = cv2.VideoCapture(0)

# 4.创建窗口cv2.namedWindow('window 1')

# 5.获取摄像头实时画面
while True:
  # 5.1 获取摄像头的帧画面
  ret,frame = capture.read()
  # 5.2 图片灰度调整
  gray = cv2.cvtColor(frame,cv2.COLOR_RGB2GRAY)
  # 5.3 检查人脸
  faces = face.detectMultiScale(gray)
  # 5.4 标记人脸
  for (x, y, w, h) in faces:
    # 里面有4个参数 1.写图片 2.坐标原点 3.识别大小 4.颜色 5.线宽
    cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 4)
  # 5.5 显示图片
    cv2.imshow('camera',frame)
  # 5.6 暂停窗口
    if cv2.waitKey(5) & 0xFF == ord('q'):
      break

# 6.释放资源
capture.release()

# 7.关闭窗口
cv2.destroyAllWindows()

以上就是简单的Python人脸识别系统的详细内容,更多关于Python人脸识别的资料请关注我们其它相关文章!

(0)

相关推荐

  • Python3 利用face_recognition实现人脸识别的方法

    前言 之前实践了下face++在线人脸识别版本,这回做一下离线版本.github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现. 官方描述: face_recognition是一个强大.简单.易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统.本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取.识别.操作人脸.本项目的人脸识别是基于业内领先的C++开源库 dlib中

  • face++与python实现人脸识别签到(考勤)功能

    项目实现利用face++开发一个课堂签到的软件,实现面向摄像头即可完成记录学号.姓名和时间的签到工作. 项目架构 项目使用场景 代码: 流程代码,主文件 #!usr/bin/ # -*- coding: utf-8 -*- import requests from json import JSONDecoder import csv import cv2 import time import tkinter as tk search_url = "https://api-cn.faceplusp

  • 如何通过python实现人脸识别验证

    这篇文章主要介绍了如何通过python实现人脸识别验证,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 直接上代码,此案例是根据https://github.com/caibojian/face_login修改的,识别率不怎么好,有时挡了半个脸还是成功的 # -*- coding: utf-8 -*- # __author__="maple" """ ┏┓ ┏┓ ┏┛┻━━━┛┻┓ ┃ ☃ ┃ ┃ ┳┛ ┗

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • 20行python代码实现人脸识别

    OpenCV 是最流行的计算机视觉库,原本用 C 和 C++ 开发,现在也支持 Python. 它使用机器学习算法在图像中搜索人的面部.对于人脸这么复杂的东西,并没有一个简单的检测能对是否存在人脸下结论,而需要成千上万的特征匹配.算法把人脸识别任务分解成数千个小任务,每个都不难处理.这些任务也被称为分类器. 对于类似于人脸的对象,你或许需要不少于 6000 个分类器,每一个都需要成功匹配(当然,有容错率),才能检测出人脸.但这有一个问题:对于人脸识别,算法从左上角开始计算一个个数据块,不停问"这

  • Python基于Dlib的人脸识别系统的实现

    之前已经介绍过人脸识别的基础概念,以及基于opencv的实现方式,今天,我们使用dlib来提取128维的人脸嵌入,并使用k临近值方法来实现人脸识别. 人脸识别系统的实现流程与之前是一样的,只是这里我们借助了dlib和face_recognition这两个库来实现.face_recognition是对dlib库的包装,使对dlib的使用更方便.所以首先要安装这2个库. pip3 install dlib pip3 install face_recognition 然后,还要安装imutils库 p

  • Python人脸识别第三方库face_recognition接口说明文档

    1. 查找图像中出现的人脸 代码示例: #导入face_recognition模块 import face_recognition #将jpg文件加载到numpy数组中 image = face_recognition.load_image_file("your_file.jpg") #查找图片中人脸(上下左右)的位置,图像中可能有多个人脸 #face_locations的值类似[(135,536,198,474),()] Face_locations = face_recogniti

  • Python facenet进行人脸识别测试过程解析

    1.简介:facenet 是基于 TensorFlow 的人脸识别开源库,有兴趣的同学可以扒扒源代码: https://github.com/davidsandberg/facenet 2.安装和配置 facenet 我们先将 facenet 源代码下载下来: git clone https://github.com/davidsandberg/facenet.git 在使用 facenet 前,务必安装下列这些库包: 或者直接移动到 facenet 目录下,一键安装 pip install -

  • 简单的Python人脸识别系统

    案例一 导入图片 思路: 1.导入库 2.加载图片 3.创建窗口 4.显示图片 5.暂停窗口 6.关闭窗口 # 1.导入库 import cv2 # 2.加载图片 img = cv2.imread('a.png') # 3.创建窗口 cv2.namedWindow('window 1 haha') # 4.显示图片 cv2.imshow('window 1',img) # 5.暂停窗口 cv2.waitKey(0) # 6.关闭窗口 cv2.destroyAllWindows() 案例二 在图片

  • 基于Python实现简单的人脸识别系统

    目录 前言 基本原理 代码实现 创建虚拟环境 安装必要的库 前言 最近又多了不少朋友关注,先在这里谢谢大家.关注我的朋友大多数都是大学生,而且我简单看了一下,低年级的大学生居多,大多数都是为了完成课程设计,作为一个过来人,还是希望大家平时能多抽出点时间学习一下,这种临时抱佛脚的策略要少用嗷.今天我们来python实现一个人脸识别系统,主要是借助了dlib这个库,相当于我们直接调用现成的库来进行人脸识别,就省去了之前教程中的数据收集和模型训练的步骤了. B站视频:用300行代码实现人脸识别系统_哔

  • 基于opencv和pillow实现人脸识别系统(附demo)

    目录 一.人脸检测和数据收集 二.训练识别器 三.人脸识别和显示 本文不涉及分类器.训练识别器等算法原理,仅包含对其应用(未来我也会写自己对机器学习算法原理的一些观点和了解) 首先我们需要知道的是利用现有框架做一个人脸识别系统并不难,然后就开始我们的系统开发吧. 我们的系统主要分为三个部分,然后我还会提出对补获图片不能添加中文的解决方案.我们需要完成的任务:1.人脸检测和数据收集2.训练识别器3.人脸识别和显示 在读此篇文章之前我相信你已经做了python环境部署和opencv模块的下载安装工作

  • PHP使用Face++接口开发微信公众平台人脸识别系统的方法

    本文实例讲述了PHP使用Face++接口开发微信公众平台人脸识别系统的方法.分享给大家供大家参考.具体如下: 效果图如下: 具体步骤如下: 首先,先登录Face++的官网注册账号:官网链接 注册之后会获取到api_secret和api_key,这些在调用接口的时候需要用到. 然后接下来的就是使用PHP脚本调用API了. 在使用PHP开发微信公共平台的时候,推荐使用Github上的一款不错的框架:wechat-php-sdk 对于微信的常用接口做了一些封装,核心文件wechat.class.php

  • Python人脸识别初探

    本文实例为大家分享了Python人脸识别的具体代码,供大家参考,具体内容如下 1.利用opencv库 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 2 .Python实现 import os import os from PIL import Image,ImageDraw import cv def detect_object(image

  • 浅理解C++ 人脸识别系统的实现

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 基于深度学习的人脸识别系统,一共用到5个开源库:OpenCV(计算机视觉库).Caffe(深度学习库).Dlib(机器学习库).libfacedetection(人脸

  • Python人脸识别之微笑检测

    目录 一.实验准备 二.图片预处理 三.划分数据集 四.CNN提取人脸识别笑脸和非笑脸 1.创建模型 2.归一化处理 3.数据增强 4.创建网络 5.单张图片测试 6.摄像头实时测试 五.Dlib提取人脸特征识别笑脸和非笑脸 一.实验准备 环境搭建 pip install tensorflow==1.2.0 pip install keras==2.0.6 pip install dlib==19.6.1 pip install h5py==2.10 如果是新建虚拟环境,还需安装以下包 pip

  • python opencv人脸识别考勤系统的完整源码

    如需安装运行环境或远程调试,可加QQ905733049, 或QQ2945218359由专业技术人员远程协助! 运行结果如下: 代码如下: import wx import wx.grid from time import localtime,strftime import os import io import zlib import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库numpy import cv2 # 图像处理的库OpenCv impo

随机推荐